INDEX

PROFESSIONAL WORK

VILLAGE ON THE THAMES
SCHWARTZ RESIDENCE
608 FERRY BOULEVARD
ZLATIC RESIDENCE
KORFF RESIDENCE
WINCHESTER MEDICAL CENTER
SHORE MEMORIAL HOSPITAL
PENNS STATE ENERGY RESEARCH FACILITY
TEMPLE UNIVERSITY SCHOOL OF MEDICINE
LEHIGH UNIVERSITY- LINDEMAN LIBRARY
AMERICA ON WHEELS MUSEUM

ACADEMIC WORK

URBAN LAND INSTITUTE DESIGN COMPETITION
AIRBUS HANGAR- STUDIO 702
DEPLOYABLE SOLAR WATER HEALTHCARE UNIT- STUDIO 701
SEATTLE OLYMPIC SCULPTURE PARK- STUDIO 602
FLUID TERRAINS- STUDIO 601

VEENA REDDY
RA. NCARB. LEED BD+C

PORTFOLIO 2002-2012
Village on the Thames, New London, CT.
10/11-2/12 Design Development, Wayne Garrick Architects

Riverbank construction has chosen to develop a remediated brownfield site into a 99-unit residential community on the banks of the Thames River in New London. The development contains both single family, multi-family townhouses with attached and unattached garages. The units, spread out over four parcels, were designed in three styles: Greek Revival, Italianate, and Shingle Style. The units, the majority of which are the Greek Revival style, vary in plan, elevation, and color. They are all conceived as modular construction, and are designed in segments that can be shipped from a factory in components and assembled on site.

Consistent architectural details were developed for the units to add richness and texture to the modular designs. The traditional details were developed with affordability, and ease of fabrication in mind.
Schwartz Residence: Lifting, Renovation & Addition
12/11- 2/12 Schematic Design, Wayne Garrick Architects

The Schwartz’s seaside residence in Westbrook, CT., was badly damaged by hurricane Irene. Zoning regulations required the home to be lifted above the flood plain. Any additions or changes made to the property were required to conform to existing zoning regulations. Parts of the property that were existing to remain were allowed to remain ‘existing non-conforming’.

The Schematic Design shows the lifting of the existing house nine feet above current existing conditions, and major renovations to the interior and exterior. Additions to the house proposed were: a ground floor consisting of a four car garage, and spa, additions to the first and second floor to create a first floor entry, an additional second floor bedroom, and a master suite with balconies. The style of the renovated exterior was chosen to be shingle style.
608 Ferry Boulevard
Feasibility Study & Entrance Renovation
1/12-2/12 Schematic Design

608 Ferry Boulevard is a commercial building in Stratford CT. It will be parcelled and rented to individual tenants for office use. Plans for tenant space divisions, potential parking layouts, and some schematic landscaping were created to demonstrate feasibility of the project.

Additionally, a schematic design for a new entrance, and renovated facade was created. A new entrance, a saw-tooth concrete porch with a low stone wall, and a metal canopy were designed at an angle referencing the angle of Ferry Boulevard. The building itself remains unchanged, but the rotation of the new entrance makes it more visible and responsive to vehicular traffic. The 608 serves as signage that is visible from the Connecticut turnpike.
Zlatic Residence, Leesburg, VA
Renovation
6/10-12/10

The Zlatic renovation was an interior renovation involving modifications to the existing house layout, replacement of windows and doors, the addition of two new bay windows, and updates to all fixtures, finishes, and cabinetry.

The small 1970’s ranch home was given a modern, more spacious feel by removing unnecessary existing partitions and cased openings. The addition of bay windows served to create more dynamic interior spaces as well as increase light passage into the previously dark interior.
Korff Residence-Master Bath Renovation
5/11-7/11-in construction

The Korff Master Bath Project encompassed the design and documentation of a renovation to an existing master bath. The client requested an open, spa-like bath with new fixtures and more storage. By relocating the fixtures, a more elegant entry perspective was created and space was made for a large glass shower and a soaker tub.

The finishes chosen were natural materials such as wood and slate, and paints and tiles in earth tones. The fixtures were chosen in a pure white finish, and faucets and hardware were chosen to be brushed nickel. The custom millwork incorporated ample storage and shelving without reducing the usable floor area.
Winchester Medical Center Renovations & Additions
9/09-5/10, Design Development & Construction Documents, Perkins + Will

Construction of the project was completed in the summer of 2011. The project was a collaboration between two Perkins + Will offices: the Atlanta office, responsible for medical planning, and the Washington DC office, responsible for core/shell and interior design. It was a multiple-year effort that entailed complex architectural, structural and HVAC coordination to marry the existing and new construction, while meeting the complex programmatic needs of the hospital.

WMC Laboratory

Clinical laboratory with services such as Microscopy, Hematology and Phlebotomy. The laboratory is the endpoint for a complex network of pneumatic tube stations throughout the medical center. It also serves the entire Valley Health System.

North Tower Expansion

Addition of a new Emergency Medical Center, Women and Children’s Health Center, and a Critical Care Unit. The five story expansion was designed as a ribbon expanding around and above the existing medical center.

Cardiac Cath Labs

Renovation and upgrade to existing cardiac cath lab suite with an improved layout, new lead lined partition construction, upgraded equipment and lighting, and new finishes. The project includes design of a temporary modular lab, and a PFT lab, to enable the center to maintain functionality during construction.

Heart and Vascular Center

New single story addition to the existing cardiovascular center consisting of assessment and treatment facilities, outpatient surgical facilities, and imaging rooms.
Shore Memorial Hospital
11/07-03/08, Design Development, Ballinger

This 320,000 SF addition to the Shore Memorial Hospital, in Somers Point, New Jersey, will provide increased and updated clinical space, as well as serve as a new entry to the hospital's campus. The new building seeks a LEED Silver rating. It will use green roofing, micro turbine power generation, solar paneling, daylighting, solar shading, locally produced building materials, and an efficient exterior wall design to meet LEED requirements.

The building is considered in two parts. The entry pavilion houses the first floor reception, the second floor physicians club, and the third floor pre-operative and recovery suite. The surgical pavilion houses all patient admittance and treatment facilities, such as radiology, MRI, phlebotomy, cardiac catheterization labs, and operating rooms. It is capped with a roof garden for staff and patient use. The two pavilions, and the existing hospital are connected with open and translucent bridges that allow for light passage, and views through the building.
Shore Memorial Hospital
11/07-0308, Design Development, Ballinger

The design requirements in developing public spaces and clinical programming were:
to maximize natural light penetration; to provide views to the ocean and landscape;
to create free-flowing public and staff areas; to clearly define clinical suites; to optimize circulation within these suites; and to allow for flexibility within the units.
PennState Energy Research Facility
04/07-06/07 Feasibility Study & Pre-Schematic Design, Ballinger

A feasibility study was done in a two month period to optimally locate and plan the new PennState Energy Research Building in the Philadelphia Naval Yard. The site was chosen to allow for the facility to have a presence on the main artery Diagonal Boulevard, as well as to have easy access to a new subway station. As the building use is partially academic space and partially industrial research, the building was planned to keep the academic and administrative functions at the street face, and the research space at the back, fully accessible to a service road and loading area.

While the building houses industrial labs, it also serves as a main teaching facility and event space. The client desired an inviting entryway to create a campus feel to the building, despite the building’s research programs necessity to keep the space secure and functional. This was achieved by locating all lounges, classrooms, and lecture spaces in the playful ‘headpiece’, and creating a transparent gateway between and through the headpiece and the research space.
Temple University School of Medicine
11/06-11/07, Schematic Design through Construction Documentation, Ballinger

The School of Medicine is a 160,000 SF, 150 million dollar teaching and research facility in Philadelphia. The building houses medical school teaching facilities: classrooms, lecture halls, as well as specialized facilities such as clinical simulation, and gross anatomy labs. Additionally, the building has a medical library, dining facilities, and seven floors of research facilities complete with a vivarium. Located along the building's west curved glass façade, researchers' offices, board rooms, and staff lounges look out onto Broad Street. The new school is connected to Temple's existing medical school, to its north, by a bridge. The lower four floors house the medical school and the tower houses research labs and administration suites. The design separates the public, administrative elements of the program, from the more modular, clinical elements. The tower sweeps south to central Philadelphia, serving as a gateway into the Temple Medical Campus.
Temple School of Medicine
Construction, Ballinger

The School’s design was delivered as a fast track project. Packages for each component - steel, concrete, curtainwall, waterproofing, and elevators, were issued throughout the construction document phase. The delivery method required the design team to rapidly determine the exterior wall, slab, and shaft and core locations.
Temple School of Medicine
Construction Completed June, 2009, Ballinger
Lehigh University - Linderman Library Utility Building
1/05-8/05, MGA Partners

The addition of a prominently sited utility building to house essential new mechanical equipment and a loading dock was designed for the northeast corner of the site. The approach taken was to create a modern element that neither competes with, nor attempts to mimic the Collegiate Gothic architecture of the existing building. The solution was a strategically angled limestone site wall, flanked by a louvered enclosure for the remainder of the mechanical space.
America on Wheels Museum
1/04-12/05, MGA Partners

The 40,000 square foot transportation museum located in an industrial site in Allentown, Pennsylvania is designed in a modern industrial style. The design is a generic series of bays which each house a program element: a gift shop, a changing exhibit gallery, a permanent collection gallery, an audio visual room, and a Mack truck gallery. The new construction is oriented towards the main roads and around the existing A&B meat packing building. The old structure houses the administration suite and a local history gallery. The simple design of the new construction is intended to provide flexibility and elegantly house a large automotive collection.
America on Wheels Museum
1/04-12/05, MGA Partners

The objectives of the interior development of the museum were to create a continuity between the interior and exterior architecture, as well as to coordinate and plan the systems in the exposed structure building. Much attention was given to the ceiling plane, where lighting, electrical, and mechanical systems all needed to be placed to respect the overall architectural intent and aesthetic. Other important aspects of the interior architecture were display surfaces, circulatory paths, and flexible spaces to accommodate the large collection of automobiles and continually changing exhibits.
America On Wheels Museum
Construction, MGA Partners

Photos courtesy of MGA Partners
America on Wheels Museum
4/08, Construction Complete, MGA Partners

Photos courtesy of America on Wheels
Urban Land Institute Competition
University of Pennsylvania 3/03

Working in an interdisciplinary team, advised by urban planner Gary Hack, and developer Jeff Rhodes, an analysis and proposal to redevelop and revitalize the depressed Anacostia area of Washington DC was made. The solution was multifaceted relying heavily on the redirection of the primary site access point, the creation of a public green space named 'the green canal' reusing existing infrastructure, and suppressing traffic in a cut and cover tunnel system directed towards the nation's capital. Mixed use was to have green roofs and a zero run off policy to aid in the Anacostia river and waterfront cleaning.
Deployable Solar/Water Healthcare Unit
Studio 701 Future Tents Limited Studio

The Solar Water Deployable Unit was designed as a response to the water and energy needs of underdeveloped countries as well as to provide the population with access to healthcare facilities. The compact unit is designed to easily transport and pneumatically deploy to become a functional space.

The unit uses fabric tensile structure along with Photovoltaic technology to collect energy and water. The winglike structures are angled to funnel water into cleansing tanks. The wings also provide surface area for PV energy collection. The energy collected is then converted and stored in underfloor batteries that are part of the unit's kit of parts. The key to the unit is its multiuse capacity, efficiency of structure, and easy transportability and transformability.
Creating a Structural Skin

物理研究 1
物理研究 2
物理研究 3
物理研究 4

结构体元素

结构皮

Airbus Hangar
Studio 701 RFR Technology Studio
Seattle Olympic Sculpture Park
Studio 602, Marion Weiss

This 12 week studio problem involved both extensive analysis of a site proposed for a new sculpture park for the Seattle Art Museum, and a design proposal for this sculpture park. The design problem was complex due to the difficult site conditions. Infrastructure tearing through the site, major truck route, several lanes of traffic, light rail tunnel, trolley line, and freight train lines made the question of site circulation and access eminently important. By proposing a design that generated its organization from the city grid and site entry points, the solution proposed to circulate pedestrians over the infrastructure via sloped surfaces and bridging elements that wove through the three parcels of the site. The sloped conditions served as means of circulation, while also creating interiors for functions such as art exhibition, indoor recreation, parking, and managerial offices.
The design intends to create a dynamic forum for contemporary artwork. The terrains and site walls accommodate sculptural work, architectural installation, and multi-media projection. In order to create a twenty-four hour, all weather forum for the viewing of art, an interior gallery is carved into the site’s slope. Its translucent walls create a double projection surface for art and film to be enjoyed from within and from without.

Seattle Olympic Sculpture Park
Studio 602 Marion Weiss
The Water Conduction System is introduced into a fabric over which the system is sectionally deformed. This series of sections is taken and refined with architectural specificity in a physical model.

The fabric is deformed both along the horizontal and vertical axes. This system is then applied to the design of a Landfill and Detoxification Center.

Fluid Terrains
Studio 601 Saul Jabbawy
Landfill and Detoxification Center

The Landfill/Detoxification Center’s design was derived from the form of the Water Conduction system. Through deformation of the section, the program of housing and rehabilitating an addict is accommodated. The rehabilitation process of the addict is paralleled with a wastewater collection, and treatment system that happens at the ground level. The water treatment process is meant to correspond to the treatment of the addict. As the water is cleansed and reintroduced into the ecosystem, so the addict is treated and reintroduced into society.