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Abstract

Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human
retina: S cones are rare (,10%) while increasing in fraction from center to periphery, and the L/M cone proportions are
highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might
drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the
L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest
signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation
of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions.
Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it
is maximally informative.
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Introduction

Human perception of color comes from comparing the signals

from cones with different peak sensitivities at long (L), medium

(M), and short (S) wavelengths. While three cone types are

required to support trichromatic color vision, the three types

distribute unequally. The central human fovea contains only

,1.5% S cones, with the fraction increasing to ,7% at greater

retinal eccentricities [1]. In most dichromatic mammals, S cones

are similarly rare (e.g., [2–4], but see [5] for exceptions).

Meanwhile, the mean ratio of L cones to M cones varies widely

between primate species (majority L in humans, majority M in

baboons [6–11]). Amongst human individuals, the L:M ratio

varies between 1:4 and 15:1 without loss of normal color vision

[12] and similar variation is seen in New World monkeys [6]. We

asked: why are S cones rare, why can the L/M ratio be so variable,

and why does the S cone fraction increase with retinal

eccentricity?

A possible explanation for the rarity of S cones has been

proposed: the lens is accommodated to focus long-wavelength (red)

light; thus short wavelengths are blurred and the Nyquist limit on

sampling predicts fewer S cones [13]. While plausible, this

explanation seems incomplete for three reasons: (i) In human, the

blur radius for blue light is ,1.5 times the blur radius for red light

([14,15,16], see Results), giving, via a Nyquist sampling argument,

an (L+M)/S ratio of ,(1.5)2,2; this implies ,33% blue cones

which is 5–10 times too high, (ii) The accommodation wavelength of

the eye (the wavelength at which light is most sharply focused) is

under behavioral control [17], and aberration could be minimized

for blue light, reversing the sampling argument, if this improved

vision, (iii) The sampling argument ignores noise and correlations

and thus could be entirely wrong if natural scenes filtered through

the ocular media had low power or greater spatial correlations at

long wavelengths. To model noise and correlations, we must

consider additional key factors – optical properties of the ocular

media, and correlated chromatic structure in natural scenes. Thus,

we asked if these two factors, in combination with chromatic

aberration in the lens, might suffice to explain long wavelength

accommodation and the structure of the cone array.

Our analysis treated as fixed three characteristics of the eye: (i)

number of cone types; (ii) cone spectral sensitivities; and (iii)

transmittance of the ocular media. Previous work has suggested

that these characteristics are evolutionary adaptations to the

structure of the environment. Specifically, researchers have

considered the relation between the number of cone types in the

retina, the spectral sensitivities of these cones, how the cone signals

are processed by ganglion cells, and the statistical structure of

naturally occurring spectra [18–20]. Researchers have suggested

that the peak sensitivities of primate cone photopigments are

optimally placed for encoding visual information in natural

environments [21–24] or to facilitate crucial behavior under the

constraints of chromatic aberration, diffraction, and input noise,

particularly in dim light [25]. Finally, it is believed that the ocular

media, especially the macular pigment, transmit less short

wavelength light in order to protect the retina against damage

from UV light [26–28].
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To model the correlations and intensity distributions in the

natural world, we based our analyses on a database of high-

resolution chromatic images accumulated in a riverine savanna

habitat in the Okavango Delta, Botswana (Fig. 1a). These images

showed similar power when integrated through the spectral

sensitivities of the three human cone classes. But including the

selective absorption of short wavelengths by the ocular media

breaks this symmetry, leading to fewer photoisomerations per

second, and hence lower signal-to-noise ratio, in S cones.

Measuring spatial correlations within, and between, model cone

classes responding to natural images, we found surprising

similarity – long-distance correlations, approximately scale inv-

ariant, prevailed between pairs of cones of any type.

Given these characteristics of cone responses to natural images,

we asked, what combination of lens accommodation wavelength

and cone mosaic would best support vision. Since visually guided

behavior is limited by the amount of information available from

the retinal cone array [29–31], we formulated a precise question

by looking for the mosaic and lens accommodation wavelength

that jointly maximized information about natural images. First, we

computed the signal-to-noise ratio, or equivalently, the informa-

tion rate, in single cone responses. Second, we summarized the

effects of correlations in natural images by measuring how

information in a cone array scaled with array size after discounting

for redundancies between cones. From these data we found that in

Author Summary

Human color perception arises by comparing the signals
from cones with peak sensitivities, at long (L), medium (M)
and short (S) wavelengths. In dichromats, a characteristic
distribution of S and M cones supports blue-yellow color
vision: a few S and mostly M. When L cones are added,
allowing red-green color vision, the S proportion remains
low, increasing slowly with increasing retinal eccentricity,
but the L/M proportion can vary 5-fold without affecting
red-green color perception. We offer a unified explanation
of these striking facts. First, we find that the spatial-
chromatic statistics of natural scenes are largely symmetric
between the L, M and S sensitivity bands. Thus, attenuation
of blue light in the optical media, and chromatic aberration
after long-wavelength accommodation of the lens, can give
L/M cones an advantage. Quantitatively, information
transmission by the cone array is maximized when the S
proportion is low but increasing slowly with retinal
eccentricity, accompanied by a lens accommodated to red
light. After including blur by the lens, the optimum depends
weakly on the red/green ratio, allowing large variations
without loss of function. This explains the basic layout of the
cone mosaic: for the resources invested, the organization
maximizes information.

Figure 1. Statistics of cone responses to natural images. A) Image from Okavango Delta, Botswana image database (Photo credit: Lucia
Seyfarth). B) Histogram of cone response intensity in units of cone opsin photoisomerizations per cone per 10 ms. S cone signals peak at lower values
than L and M cone signals, which are similar. C) Correlation between cone signals declines with spatial separation but remain significantly positive at
large separations. Correlations between cone signals from different cone types are nearly as large as the correlations between cone signals from
cones of the same type. Cross-correlations between L and S cones and between M and S cones were indistinguishable and are plotted with the same
black line. D) The power spectrum in each color channel shows that correlations are approximately scale invariant over several log units of spatial
frequency. E) At all spatial scales 90% of the correlations between three equally separated points in an image arise from underlying pairwise
correlations (see text).
doi:10.1371/journal.pcbi.1000677.g001
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the absence of chromatic aberration, information about natural

scenes was maximized by an array with ,40% S cones and about

equal numbers of L and M cones.

We then included the point-spread function of the human eye

accommodated to different wavelengths [32]. The resulting

blurring of light leads to redundancies in the responses of

neighboring cones. Including these redundancies, information

was maximized when the lens was accommodated to long

wavelengths while the mosaic contained just a few percent of S

cones. Meanwhile, after including optical blur, the amount of

information was largely independent of the L/M ratio, allowing

substantial differences in this ratio between near-optimal mosaics.

In addition, plausible variations in our parameters gave a slight

advantage to having a majority of either L or M cones (as seen on

average in, e.g., human vs. baboon). We also modeled the

topographic variation of the retina, and found that as the cone

density decreased towards the periphery, the advantage of L cones

decreased too. Thus, information was maximized by an S cone

fraction that increased towards the periphery of the mosaic.

All of these features – low S cone fraction, large variation in L/

M ratios, and peripheral increase of S cones – are seen in the

primate retina. The match between our analysis and the observed

structure of the cone mosaic adds to a growing body of evidence,

which started with pioneering work [29,30,31], investigating how

the constraints and properties of the biological hardware interact

with the statistical properties of the natural environment to shape

organization of the brain (e.g., [21,33–45]).

Results

Image database
Our analyses are based on a new high-resolution (camera

resolution: 201463040; 46 pixel separation = one degree of visual

angle), database of color images from which we selected 176

daylight scenes of a riverine habitat in dry-season Botswana.

Although our image resolution was less than that of the primate

fovea, we used the scale invariance of natural images to treat the

pixel spacing as being equivalent to the foveal cone spacing for a

more distant observer [46,47]. We required that the camera

response be in the linear range and that fewer than 0.5% of the

pixels be saturated. Most images in our database that were

acquired under daylight conditions had these properties. While

our images are qualitatively different from those taken in other

environments (e.g., urban scenes, the van Hateren database [48],

the McGill Calibrated Colour Image Database [49]), we have

tested (but do not show here) that these image databases share the

main statistical properties (distributions of light intensity and

spatial correlations) that drive our analysis.

From the red, green, and blue camera response at all pixels in

each image we estimated the equivalent L, M, and S cone

photoreceptor response. First we calculated the best choice

amongst linear maps between camera and cone spectral

sensitivities [50] and checked the accuracy using patches from

the Macbeth Color Checker imaged with both our camera and

a spectral-radiometer. Photoisomerization rates (R* s21) were

estimated using the procedures described in [51] for guinea pig,

but substituting appropriate parameters for human foveal cones

(human peak photopigment sensitivities and ocular media

transmittance). See Materials and Methods for details of camera

calibration and image processing.

Chromatic statistics of natural scenes
Distributions of photon absorption rates. Keeping fixed

the number of cone types, their spectral sensitivities, and

transmittance of ocular media, cone isomerization rates

characterize the statistics of natural images as far as they affect

the design of other parts of the system. Thus we measured the

distribution of L, M, and S cone photon absorption rates for our

images. These distributions were highly variable among individual

images, but after averaging over images they all have a skewed

shape with a low peak and long tail (Fig. 1b). This shape

resembles the luminance distributions seen in grayscale images

[46–48,52,53]. Although relatively similar raw intensities were

captured by the camera within L, M and S spectral sensitivities, S

cones transmit the weakest signal. This difference is primarily due

to selective attenuation of short-wavelength light by the ocular

media and the macular pigment [26,27,54–56].

Correlations among cone signals. The two-point spatial

auto-correlation function (Fig. 1c) of signals from a particular

cone type is approximately scale-invariant over several log units,

leading to a power spectrum that falls off according to a power law

in spatial frequency (Fig. 1d). This is consistent with other

measured power spectra in color images [46] and grayscale images

(e.g., [47]). Positive correlations persist between locations that span

half the image. The cross-correlations between L, M, and S

responses were nearly identical and also resembled the auto-

correlations. These similarities occur despite the different spectral

sensitivities of the S and L/M cones, indicating that most

individual surfaces in images, even those that are perceived by

humans as having vivid colors, reflect light at many wavelengths.

Natural images also have higher-order correlations among three

or more points. A part of these correlations arises from underlying

scale-invariant relations between pairs of points. However, since

natural images contain additional object-like structures and

extended contours, we asked whether there might be an additional

component in the three-point correlation that is independent of

the pair-wise correlations, and whether the size of this component

depends on scale. The full third-order correlation is

C3 S1S2S3ð Þ~E S1S2S3ð Þ,

where E denotes the expected value of the product of signals Si,

adjusted to a zero mean value. The portion of this quantity that is

independent of the pair-wise correlations is given by the third order

cumulant:

k(S1S2S3)~E(S1S2S3){E(S1S2)E(S3){E(S1S3)E(S2)

{E(S2S3)E(S1)z2E(S1)E(S2)E(S3)

We computed the ratio k/C3 for points arranged on the vertices of

randomly oriented and positioned equilateral triangles of various

sizes (Fig. 1E). The results showed that ,10% of these three-point

correlations do not derive from the underlying two-point relations

and that this percentage is independent of spatial scale, in

agreement with a similar analysis using the van Hateren database

[57].

Information represented by cone signals
To determine the characteristics of a cone array that maximizes

information about natural scenes, we considered in turn: (i) the

information represented by a single, independent cone signal; (ii)
an array of cones of the same type; and (iii) a mixed array. The

single cone analysis incorporated the attenuation of short

wavelength light by the ocular media, while the cone array

analyses incorporated spatial correlations in natural images. We

then found the LS and LM arrays that maximized transmitted

information. The optimization analysis was carried out with and

Design of a Trichromatic Cone Array
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without including accommodation of the lens to understand how

chromatic aberration interacts with other factors.
Estimating information. The information transmitted by a

single channel about its input depends on three factors: (i) the

range of signals (the ‘‘bandwidth’’); (ii) how evenly the bandwidth

is used; and (iii) noise in the signals. Shannon captured all three of

these factors in his formula for mutual information, which is measured

by subtracting the ‘‘entropy’’ of noise from the ‘‘entropy’’ of

channel responses. Taking noise to be additive, a simple

approximate way of accounting for its effects is to simply bin the

channel responses into levels spaced to reflect the noise amplitude.

Then the mutual information between channel responses (S) and

the input (E) can be estimated from the entropy of the binned

responses using the formula

I1(S,E)~{
X
si[S

p(si)log2½p(si)�: ð1Þ

Here si represents a particular signaling level in the set of possible

levels S, and p(si) is the probability of si. The range of the sum in (1)

reflects the bandwidth, the probability distribution p(si) reflects the

evenness of bandwidth usage, and the spacing of levels reflects the

noise. In the analysis here, S represents a cone’s response to the

image ensemble E. To the extent that cone signals are responding

to light, their response entropy minus the entropy of noise is the

mutual information between the cone response (S) and the image

ensemble (E), and noise is being approximately accounted for

using response bins with widths that reflect noise amplitude.

The amount of information transmitted by a signal is also

related to the signal-to-noise ratio (SNR). The information

capacity for a channel transmitting Gaussian distributed signals

(s) with additive Gaussian noise (n) is

I1(S,E)~
1

2
log2(1zSNR), ð2Þ

where SNR is the ratio of signal power (expected value of s2) to

noise power (expected value of n2). Just as in Eq. 1, large signal

power (large bandwidth) increases information, and large noise for

a fixed signal power decreases it. While Eq. (2) is often taken to

describe a continuous Gaussian channel, this channel is effectively

discretized by the noise. The scale for reliably distinguishing

signaling levels is then set by the noise standard deviation. This

gives the approximate connection between (1) and (2). Specifically

one can separate the signal in the Gaussian channel into

‘‘distinguishable levels’’ si determined by the noise standard

deviations, assign each level its Gaussian probability, and then

apply (1).
Information capacity of single cones. The photoisom-

erization rate (R* / cone / integration time), the first neural

representation of light entering the eye, is the signal. There are two

sources of noise: quantal fluctuations in photon arrival rates

(photon noise) and spontaneous isomerization of cone opsins (dark

noise). Thus the SNR of a given cone type is

SNR:
Var(s)

Var(n)
&

Var(R�)

vR�wzR� dark

ð3Þ

where R*dark is the spontaneous isomerization rate. The numerator

in (3) is the signal variance and the denominator is the noise

variance. To compute signal variance we measured the variance of

the photoisomerization rate. Because the photon and thermal

noise result from independent Poisson processes, the overall noise

variance ,n2. is the sum of the power in each kind of noise. To

compute the power in photon noise, we used the fact that photon

noise is Poisson. Thus, for a given light level, the noise amplitude is

the square root of the signal. The power in photon noise is given

by the expected value of the square of the amplitude, and is thus

simply the expected value of the signal ,R*.. Similarly, the

power in thermal noise is R*dark. In the daylight conditions of our

images, photon noise dominates, so we will drop the dark noise

contribution entirely. S cones have, on average, fewer

isomerizations primarily because of the transmittance of the

ocular media (see Fig. 1b). Consequently, they have a lower SNR

and transmit less information. Likewise, because the L and M

cones have very similar distributions of isomerization rates, they

will have similar SNRs and will transmit similar amounts of

information.

A precise estimate of cone information rates will vary with the

assumed cone integration time and the overall luminance of

images in the ensemble. For a cone integration time of 10 ms, and

different choices of lighting conditions for the image ensemble, the

Gaussian channel approximation for single L, M and S cones gave

a range of information rates ,3 bits,I1L,,7.5 bits, 3

bits,I1M,7.5 bits, ,1.5 bits,I1S,,6 bits. The broad distribu-

tion of information rates reflected a difference between scenes with

direct illumination vs. shade. The estimated S cone information

rate was robustly lower than the L and M cone rates, while the

latter were similar regardless of the lighting conditions. Specifi-

cally, across lighting conditions the mean value of I1L–I1S was ,1.6

bits, while the mean value of I1L–I1M was ,0.2 bits. As we will see,

this qualitative asymmetry drives the organization of the optimal

cone mosaic, while the precise values of the cone information rates

have little influence on the optimal cone proportions. Because

visual behavior frequently requires fine discrimination in shady

conditions, we analyzed the subset of shady images (typically

forested and bushy scenes, which had I1L,,5 bits). For a cone

integration time of 10 ms, the Gaussian channel approximation

for single L, M and S cones then gave average estimated

information rates I1L,4 bits, I1M,4 bits and I1S,3 bits. We took

these estimates to mean that a cone transmitting ,I bits effectively

has ,2I distinguishable signaling levels.

While the Gaussian channel approximation above is one way to

estimate the information transmitted by a single cone, another

approach is to directly apply Shannon’s formula (1) to the cone

isomerization distributions in Fig. 1b, binned to reflect photon

noise. This method similarly gives less information in the S cone

signals and approximate equality between L and M cones. Our

main result using this alternative formulation for the single cone

information is given in Materials and Methods.

Information transmitted by an array of cones of the same type.

If the responses of all cones were statistically independent, the

information transmitted by a cone array of a given type would

simply be the number of cones in the array times the information

transmitted by a single cone. However, cone signals are not

independent and are correlated over long distances (Fig. 1c).

These correlations cause redundancy in the signals of nearby

cones, so that the information IN represented by an array of cones

scales sub-linearly with the number of cones in the array (N).

Following Eqs. 11–13 in Borghuis et al. [58], the information

represented by the response of an array of N cones about an image

ensemble is taken to scale as

IN (S,E)~I1(S,E)Nd: ð4Þ

where I1 is the information in a single cone and 0,d,1. This

power law dependence is plausible over a large range of array sizes

because the pair-wise correlations in natural scenes are approx-
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imately scale-invariant over several orders of magnitude in

separation (Fig. 1d; [46,47]) [58]. The pair-wise scale-invariance

is usually taken to arise from the scale-invariance of images as

whole [53,59]. Cone isomerizations, unlike signals at later stages of

retinal processing, are not decorrelated, and therefore have the

same long-range redundancy found in the images they encode.

Thus, our task was to estimate d from the image data.

We estimated d by directly measuring how the amount of

information represented scales with the size of small arrays. First

we generalized Eq. (1) to an array of cones

IN (S,E)~{
X

s1,:::,sN

p(s1,:::,sN )log2½p(s1,:::,sN )� ð5Þ

where p(s1,…sN) is the joint probability of the N cone signals. The

scale invariance of natural images was used to treat each pixel in

an image as a model cone, with responses discretized to 16 equally

probable levels. The scaling exponent d was estimated by fitting to

the measured information in small arrays (N = 1…6; Fig. 2, top).

The data are not well-fit by a straight line (note that the errors bars

on the data points are tiny because our sample is so large, allowing

us to distinguish between the linear and power-law fits).

Specifically, if there were no correlations the information would

have grown as N log2(16) giving 24 bits for N = 6. Likewise, if we

had only included nearest neighbor correlations, then the

information in a 6-pixel array, estimated as three times the

information in pixel pairs, would have been about 6% higher than

measured in (Fig. 2, top). We checked that the estimated scaling

exponent did not depend significantly on the number of discrete

levels. In mixed cone arrays, the spacing of the cones of a

particular type will depend on the proportion of the cones of that

type in the array. To reflect this we calculated how d varies for

arrays with different spacings between elements (Fig. 2, bottom).

For all spacings we found that d was essentially identical for L, M,

and S arrays, reflecting the very similar correlations within each of

these frequency bands. Trying to estimate high dimensional

entropies using (5) is difficult (see, e.g., [60]) – hence in subsequent

analyses we tested to what degree variations in the estimate of d
affected our results.

The mixed cone mosaic without chromatic aberration
Having estimated information in single cones and in arrays of

one type of cone, we asked how a mosaic with two cone types

should be organized to maximize information. To separate out the

effects of accommodation wavelength of the lens we first studied

the optimal mosaic without chromatic aberration.

The information in a mixed mosaic of two cone types is the sum

of the information in each array minus the redundant mutual

information between them. For example, the information

transmitted by a mixed array of X and Y cones (where X and Y

can be L, M or S) is given by

I(S,E)~IX (SX ,E)zIY (SY ,E){IXY (SX ,SY ): ð6Þ

Here SX,Y are the sets of X and Y array responses while S = {SX,SY}

represents the set of joint responses; IX and IY represent the mutual

information between the responses of the X and Y arrays and the

image input; and IXY is the mutual information between responses

of the X and Y subarrays:

IXY (SX ,SY )~{
X
sx,sy

p(sx,sy)log2

p(sx)p(sy)

p(sx,sy)

� �
:

Here p(sx,sy) is the joint response distribution of X and Y cone

arrays, and p(sx) and p(sy) are marginal response distributions of

each cone type. In deriving (6) we assumed that noise in X and Y

cones is uncorrelated, so that the conditional response probability

factorizes: p(sX,sY|E) = p(sX|E) p(sY|E).

Neglecting chromatic aberration, the information scaling for

each cone type (see (4) and Fig. 2) then allows us to write

I(S,E)~I1X (SX ,E)NdX

X zI1Y (SY ,E)NdY

Y {IXY (SX ,SY ) ð7Þ

Here, I1X is the information transmitted by a single X cone; I1Y is

the information transmitted by a single Y cone; and dX and dY are

scaling exponents. The number of cones is N = NX+NY, while the

average distance in pixels between neighboring cones is dX = !(N/

NX) for X cones, and dY = !(N/NY) for Y cones. The exponents dX,Y

are functions of dX,Y (see Fig. 2).

We measured the mutual information IXY in a 6-pixel array by

varying the proportion of each kind of cone and their geometric

arrangement. The cone signals were discretized to reflect the

number of signaling levels in each cone class, commensurate with

their different estimated information transmission rates. These

discrete signals were then used to directly compute mutual

Figure 2. Information in arrays of L, M, and S cones. (Top)
Information in N cones of a given type, IN, plotted as a function of N for
L, M, and S cone arrays. Array spacing is set here to 1 pixel (46
pixels = one degree of visual angle). The best-fitting power law
(IN~I1Nd) is also shown. For the minimal spacing of pixels in our
images (d = 1), d= 0.75 in each channel. Using 50 randomly selected
images from the van Hateren database [48] similarly gave d= 0.72.
(Bottom) d is plotted as a function of spacing (d) for each cone class.
doi:10.1371/journal.pcbi.1000677.g002
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information using (5). In this way, the mutual information between

the L and M and between L and S cones in mixed arrays was

estimated directly from the image data. To do this we used (5) to

compute the total information (I) in mixed arrays, as well as the

information in the subarrays of each type. From (6), this gave

IXY(SX,SY) = IX(SX,E)+IY(SY,E)2I(S,E). We averaged over all geo-

metric arrangements of arrays with the same cone proportion, to

smooth out effects of pixelation. As expected, the mutual

information between cone types vanishes for arrays with only

one cone type and peaks in between, giving a domed shape (i.e.,

mutual information between two cone classes was highest when

the array had an approximately even mix of the two classes of

cones; Fig. 3).

The above analysis estimates how the mutual information

between X and Y cones changes with the proportion of X and Y

cones in a small array. Now we need to know how the mutual

information in a large array changes with the proportion of cones of

each type. This is hard to measure directly but will have the same

qualitative domed form as for small arrays. Thus to extrapolate to

large arrays we made the simplifying assumption that the ratio

IXY (SX ,SY )

I(S,E)
:rXY xð Þ

is a function only of the relative fraction of X cones, x = NX/N (or

Y cones, (1-x) = NY/N). Using this form of the mutual information

between X and Y cones, we can rewrite (7) as

I(S,E)~
I1X (SX ,E)NdX

X zI1Y (SY ,E)NdY

Y

1zrXY (x)
:

For arrays in which the scaling exponents of the two subarrays are

similar (dX<dY = d), our simplification is equivalent to assuming

that total information in the array also scales as Nd.

The similar correlations between L,M,S cones and slow

variation of d with spacing in Fig. 2, thus imply that our

simplification should be valid for mixed arrays with roughly similar

numbers of cones of each type, and for sparse arrays, since

dX<dY = d in these cases. We checked that our final results were

self-consistent within this domain of validity. We also checked that

our final results depended largely on the qualitative shape of the X-

Y mutual information curve (which we infer from small arrays),

rather than the precise values. We confirmed this by repeating our

analyses with various assumed domed shapes for the mutual

information.

To find the optimal mixed cone mosaics we first measured the

ratio r directly from the result in 6-pixel LM and LS arrays (Fig. 3)

and used our estimates of single cone SNR to write

I(S,E)~
(1=2)log2(1zSNRX )NdX

X z(1=2)log2(1zSNRY )NdY

Y

1zrXY (x)
:

We then obtained the optimal mosaic by maximizing I(S,E) with

respect to the proportion of L cones. We obtained an optimal LM

mosaic with 52% L cones and 48% M cones. Using the same

technique, but substituting S cones for M cones, we found an

optimal LS mosaic with 61% L cones and 39% S cones

(Fig. 4).

In both cases, the small excess of L cones was driven by two

factors: (a) the similarity in power and correlations between L, M

and S sensitivity bands in natural scenes, and (b) the selective

attenuation of short wavelength light by the ocular media, which

breaks the symmetry between L, M, and S. Because L and M

bands are so similar, the optimum contained about equally many

of each type of cone. Meanwhile, the higher SNR in L responses

resulted in 20% more L cones in the optimal mosaic. This mosaic,

which is well adapted to the symmetric statistics of natural images

and to the attenuation of the blue light in the ocular media,

differed in two respects from the observed characteristics of the

human eye: (a) the S cone fraction is an order of magnitude too

high, and (b) there is no indication that the L/M ratio can be any

more variable that the L/S ratio without detriment. But this

analysis omitted one further key factor – chromatic aberration in

the lens.

Figure 3. Mutual information between cone arrays. Mutual
information between L pixels and M pixels (solid line) and between L
pixels and S pixels (dotted line) is shown as a function of the number of
L pixels (out of 6) in the array.
doi:10.1371/journal.pcbi.1000677.g003

Figure 4. Optimal mosaic for a mixed cone array. Information
transmitted by a mixed LM array as a function of the percentage of L
cones in the array is shown (solid line), and similarly for an LS array
(dotted line). Information represented by a mixed LM array was highest
with 52% L cones. Information represented by a mixed LS array was
highest with 61% L cones. These results do not include the effects of
the human eye’s optics.
doi:10.1371/journal.pcbi.1000677.g004
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Optical blur makes S cones rare and reduces sensitivity to
the L/M ratio

The lens of the eye blurs light of different wavelengths to

different degrees. Such chromatic aberration can affect the cone

proportions in the optimal mosaic because the amount of blurring

differs for each cone channel [61]. The presence of blur modifies

the problem of calculating information in an array: within a

blurred region the information conveyed by pixels is highly

redundant.

For each color channel the extent of the optical blur was

estimated from measurements of optical aberrations in human

observers ([32]; data and code provided by H. Hofer; see Materials

and Methods). While the eye can accommodate to various

wavelengths, in white light and under normal viewing conditions

the eye tends to focus for longer wavelengths, near the peak

sensitivities of L and M cones (e.g. [15,16]). For this reason, we

used the mean chromatic point spread function (PSF) averaged

across 13 subjects when accommodation focuses light best on the L

and M cones. PSFs are highly kurtotic, and so values far away

from the central peak are important for characterizing the PSF

width. As an estimate of the region over which the blur is large, we

chose one half of the radius that enclosed 90% of the PSF as a

measure of this width. This choice corresponds roughly to twice

the full-width at half-height of the PSF. For each color channel,

this estimate of the spatial extent of the significant chromatic

aberrations (i.e., blur) gave

dL & 2:2 arcmin & 4:8 pixels

dM & 2:2 arcmin & 4:8 pixels

dS & 3:3 arcmin & 7:3 pixels

with the conversion to pixels obtained assuming a foveal cone-to

cone spacing of ,2.2 cones/arcmin [62]. To estimate the

information in a blurred chromatic mosaic, we made the

approximation that chromatic aberrations render L, M, and S

cones separated by distances less than dL, dM, and dS respectively,

completely redundant. We also made the approximation that, for

each cone class, the blur has no effect beyond this distance.

First we consider cones of one class separated by distances less

than dX. In our approximation such cones are transmitting

completely correlated signals but have independent noise.

Averaging n redundant signals that are each corrupted by an

independent noise source (each with the same average magnitude)

will increase the signal-to-noise ratio by a factor of n. Thus, in our

analysis, averaging across a block of n redundant cone signals

increases the signal-to-noise ratio relative to a single cone so that

the block of cones represents

InX (SX ,E)~
1

2
log2(1zn �SNRX )

bits of information. The information represented by a block of

(dX)2 pixels is therefore

Iblock(SX ,E)~
1

2
log2(1zd2

X
�SNRX ):

This block information can be thought of as the information

represented by a single ‘effective pixel’ that includes all the

redundant pixels in a small region. In mixed arrays of cones of

different types, a given block may only contain a fraction x of cones

of a particular type. Then,

Iblock
X (SX ,E)~

1

2
log2(1zxd2

X SNR)

gives the information represented by pixels of that type within the

block.

To compute the total information in an array of cones, we group

pixels into blocks of area d2
X and treat the blocks as mutually

correlated in a scale invariant way. Specifically, each of the blocks

defined by the blur space constant is treated as a single effective pixel

transmitting Iblock bits. Then, taking these blocks as being spatially

correlated as in Fig. 1d (because of the scale invariance of natural

scenes), the same treatment as for arrays of single cones can be

applied to arrays of blocks of cones. Thus, following (4) for single

cones, the total information transmitted by cones of one type in the

blurred array is given by a power-law in the number of blocks:

Iblur
X (SX ,E)~Iblock

X (SX ,E):
N

d2
X

� �dX

,

where N is the total number of pixels in the array, and so N/dX
2 is

the number of blocks in the array and dX is the scaling exponent

from Fig. 2 (bottom) for a pixel separation equal to the spacing of

the blocks. For L, M blocks spaced at 4.8 pixels, this gave

dL,M = 0.89, while for S blocks spaced at 7.3 pixels, dS = 0.91.

The total information in a mixed array is then approximated as

the sum of the information in the sub-arrays of each type minus

the mutual information between the sub-arrays. This mutual

information was taken to be the same fraction of the total

information as measured before blurring. This approximation

reproduced the general domed shape of the mutual information as

a function of the fraction of cones of each type. Thus the

information in an array with two kinds of cones and blurred optics

was estimated as

I(S,E)~

1

2
log2 1zxd2

X SNRX

� �: N

d2
X

� �dX

z
1

2
log2 1z(1{x)d2

Y SNRY

� �: N

d2
Y

� �dY

1zrXY (x)
ð8Þ

where x = NX/N and 1-x = NY/N = (N-NX)/N are the fractions of

each kind of cone. Including blur in this way increases the

redundancy in each channel, predominantly among nearby pixels.

We asked what cone fractions maximized information when the

optics are accommodated to focus light best on L and M cones.

Using our estimated values for the blur (dL,M,S), the scaling

exponents (dL,M,S), the SNRs, and the redundancy (rLM, rLS) we

plotted the total information conveyed by LM and LS arrays

(Fig. 5). The increased redundancy in the L and M channels

produces a broad range of equally effective LM mosaics (Fig. 5,
top). That the L/M cone ratio has little effect on the information

transmitted by a cone mosaic is consistent with the large variability

in L/M ratios in primates with normal color vision [6,12,] and

with the observation that human performance on some psycho-

physical tasks is invariant with respect to cone ratio [63,64].

Meanwhile, the blur reduces the information transmitted by the

S channel more than by the L and M channels since the blur in the

S channel extends further. Thus its inclusion reduces the number

of S cones in the optimal mosaic as compared to Fig. 4. That most

information is transmitted by an array with few S cones (,6.5% -

Fig. 5, bottom) is consistent with the rarity of S cones in most

mammalian cone mosaics (e.g. [53]). The advantage of L cone

domination is small but significant – using our parameters, a
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mosaic with 90% L cones conveys 10% more information per

cone than a mosaic with 90% S cones. This result confirms the

basic intuition of Yellott et al. [13], that chromatic aberration

plays a key role in the organization of the cone mosaic, but

includes additionally the effects of spatial correlations and noise.

One limitation of our analysis was that we analyzed a mixed

mosaic of just L and S cones; if we were to consider all three cone

types simultaneously, the fraction of S cones in the optimal mosaic

would likely decrease. This is because an optimally organized LM

mosaic transmits slightly more information per cone than a mosaic

with only L cones. Thus an optimal trichromatic mosaic would

have still fewer S cones than the optimal LS mosaic. Likewise,

because the fraction of S cones in the optimal array is small, it is

unlikely to significantly affect the L/M ratio in the trichromatic

array.

How variations in optical factors and scene statistics
affect the optimal array

Our results for the optimal mosaic are due to the interaction of

four factors: (i) correlations within a cone class (summarized by the

scaling exponents dL,M,S); (ii) correlations between cone classes

(summarized by the redundancy factor rLS,LM); (iii) optical blur

(summarized by the blur widths dL,M,S); (iv) power in different

chromatic bands and attenuation by the ocular media (summa-

rized by single cone SNRs). All of these factors were modeled and

estimated, rather than directly measured, and might vary between

individuals and species. Thus, to test the relative importance of

each of these factors in determining the optimum we systematically

varied each one while keeping the others fixed and determined the

consequences for the optimal array.

Variations in scaling. First we studied variations in the

scaling exponents dL,M,S that summarized an effect of scene

statistics – spatial correlations within each cone array. Given the L,

M, S block spacing (dL = dM = 4.8 pixels, dS = 7.3 pixels), we had

measured dL = dM = 0.89 and dS = 0.91 from Fig. 2. We found

that varying dL,M jointly simply moved the flat LM information

curve up or down but a 10% difference between dL and dM gave

an 3% advantage to having 90% L or M cones (Fig. 6a) as

opposed to 50%. For LS arrays we found that varying dL and dS

together, while keeping them similar, simply shifted the height of

the information curve (Fig. 6b). However, a substantial (10%)

difference between dL and dS sharpened or reduced the advantage

of L-domination in the array (15% vs. 5% more information with

90% L cones than with 90% S cones). Thus, the measured

similarity in correlation within each cone sensitivity band plays a

key role in the organization of the optimal mosaic.

Variations in blur. We estimated the region over which

optical blur is large in terms of the chromatic point spread function

averaged over many observers. Differences between observers or a

different definition of the blur width could lead a different

estimate. Thus we tested that rescaling the blur widths as dL,M,S9 =

c dL,M,S or shifting them together as dL,M,S9 = c + dL,M,S affects the

overall height of the information curves, but has little effect on the

cone proportions in the optimal array (not shown). Then we tested

the effects of relative changes in the blur (Fig. 6c,d). For LM

arrays we found that the cone type with the smaller blur will

dominate the optimal array. For LS arrays increasing the blur of L

while S blur stays fixed reduced the advantage of L cones. In both

cases, a 25% change in the relative blur widths was necessary for a

5% change in information per cone conveyed by an array with

90% L vs. an array with 10% L. We concluded that our results

were robust to modest relative variations in the blur estimates, and

that the cone fractions in the optimal mosaic have similar

sensitivity to variations in optical blur as compared to variations in

the spatial correlations (Fig. 6a,b).

Variations in mutual information estimate. We

extrapolated the mutual information between cone classes from

small arrays (Fig. 3) by assuming that redundancy within an array

is only a function of cone fraction. To test the dependence of our

results on the exact form of the mutual information, we

parameterized domed shapes similar to those in Fig. 3 as

rXY (x)~b
0:12

0:25a

� �
xa(1{x)a

Here b fixes the overall normalization while a larger a
parameterizes a narrower curve. The choice a= 0.7, b= 1

matches the LM curve in Fig. 3. Variations in the width of rLM

had only small effects on the LM information curve – between

a= 0.4 (wider r) and a= 1 (narrower r), the LM information

curve remained very flat (Fig. 6e). However, larger a gave a small

advantage to having a majority of L/M cones as opposed a 50/50

balance (a= 1 gave a 1% advantage). Smaller a, meanwhile, made

a 50/50 balance slightly advantageous. Varying the overall

amplitude of rLM had similar small effects – a 50% increase in b
gave a 2% advantage to having a majority of L/M cones, as

opposed to a 50/50 balance. Thus, over a wide range of

parameters the LM information curve is quite flat, but a modest

Figure 5. Optimal mosaic after accounting for chromatic
aberration. (Top) Information represented by a mixed LM array as a
function of the percentage of L cones in the array is shown on the top,
and similarly for an LS array (Bottom). When we model the effects of
chromatic blur due to human eye optics, information transmitted by a
mixed LM array was largely independent of the L/M ratio, except when
one type was extremely scarce. Information transmitted by a mixed LS
array was highest with ,6% S cones.
doi:10.1371/journal.pcbi.1000677.g005

Design of a Trichromatic Cone Array

PLoS Computational Biology | www.ploscompbiol.org 8 February 2010 | Volume 6 | Issue 2 | e1000677



advantage can develop for having majority L or M. Finally,

variations in rLS made little difference to the cone proportions in

the optimal LS array (Fig. 6f).

Variations in SNR. We investigated how the estimates of

single cone SNR affected the optimal cone proportions.

Surprisingly, the optimal proportions depended weakly on these

Figure 6. Variations in the optimal mosaic. Information per cone as a function of L cone fraction is shown for various scaling exponents, chromatic
PSFs, and forms of the mutual information between cone classes. (a) Varying the scaling exponents dL and dM jointly had little affect on the flatness of the
LM information curve. Differential scaling in L vs. M of about 10% led to approximately 3% higher information transmission rate for L or M dominant
arrays (depending on which channel scaled with higher exponent). (b) Varying the scaling exponents, dL and dS had little affect on the optimal ratio of L
and S cones, unless the L channel scaled with a substantially smaller exponent than the S channel. (c) Increasing blur in the L or M channel (while keeping
the other channel’s blur fixed) led to an M or L dominated optimal mosaic, respectively. A 25% increase in blur was necessary to incur a 5% advantage for
a mosaic dominated (90%) by one cone class. (d) A 25% increase in the blur in the L channel relative to the S channel was necessary to significantly
reduce the advantage of an L cone dominated mosaic relative to an S cone dominated mosaic. (e) Adjusting the peak or width of the form of the LM
mutual information curve (see Fig. 3) had small effects on the flatness of the LM information curve. A more peaked or narrower mutual information (see
text) curve led to a 2% advantage for either an L or M dominant mosaic. A less peaked or wider mutual information curve led to a 1% advantage for an
evenly mixed LM mosaic. (f) The same adjustments to the LS mutual information curve had little effect on the optimal L/S ratio.
doi:10.1371/journal.pcbi.1000677.g006
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parameters so long as they were large – e.g. a 5–10-fold increase in

the estimated SNRs increased the optimal L cone fraction by ,3–

4%. To understand this, we observed that when the SNRs are

large, and x (the fraction of cones of type X) is not too close to 0 or

1, the condition for the optimum (LI=Lx~0) turns out to be

1

2x

N

d2
X

� �dX

{
1

2(1{x)

N

d2
Y

� �dY

&
1

1zrXY (x)

Lr

Lx

� �

Thus, to leading order, the cone SNRs drop out of the balance

condition determining the cone proportions in the optimal array

when chromatic aberration is included. In the absence of blur, the

lower SNR of S cones by itself resulted in an optimal array that

contained fewer (,40%) S cones (Fig. 4). However, the inclusion

of optical blur further reduces the optimal S cone proportions,

and, given that the symmetry between L and S cones is already

broken by the lower S cone SNR, the optimal proportions are

determined to leading order by spatial correlations and optical

blur.

Summary. The solution for the optimal cone array is driven

by a balance between three factors – the blur as summarized in

dX,Y, the spatial correlations within cone classes as summarized in

the scaling exponents dX,Y, and correlations between cone classes

as summarized by the redundancy factor rXY. While the LM

information curve remains relatively flat over substantial range of

these parameters, a small advantage can arise for having a

majority of L or M cones, or for having a 50–50 array. Possibly

this explains why the mean L-fraction in different species seems to

be skewed towards L (human, [12]) or M (baboon, [11]), while the

average across primate species may be close to an even (50–50

LM) mix [6]. At the same time the relative flatness of the LM

information curve across a wide range of parameters likely

explains why large variations in L cone proportion apparently

occur across individuals without impairment of vision [63,64].

Meanwhile, across a broad array of variations the optimal LS

array robustly had a majority of L cones, although the information

advantage of this organization varied somewhat with the

parameters. We found that spatial correlations in the cone array,

which arise from natural scene statistics, were as important in

determining the optimum as optical blur, which arises from a

property of the lens.

Effects of accommodation
The analysis above was carried out with a lens that focused long

wavelengths best, as appropriate for the normal accommodative

state of the eye [15,16]. However, the accommodation wavelength

at which light is most focused by the lens is under behavioral

control. Since the single cone SNRs, provided they were large,

were a sub-leading determinant of the optimal cone fractions, we

wondered whether there is any advantage to long-wavelength

accommodation.

Thus we explored how different accommodation wavelengths

affect the distribution of cones in the optimal LS mosaic. Using the

polychromatic PSFs computed for various accommodation

wavelengths (see Materials and Methods), we repeated the

optimization procedure (described above) for mixed LS arrays.

Since long and short wavelengths cannot be focused simulta-

neously, we expected to find optimal arrays that are dominated by

either L or S cones, depending which channel is best focused.

Our measure of the spatial extent of the blur in each color

channel was again half of the 90% width of the PSF. The width of

the L cone PSF is plotted against the width of the S cone PSF in

Fig. 7a. For each accommodation wavelength, we then estimated

the information per cone as a function of the L cone fraction

following Eq. 7 (Fig. 7b). When the lens accommodated to the L

cone peak sensitivity, the mosaic maximizing information per cone

had mostly L cones, while a lens accommodated to S cone peak

sensitivity led to an optimal mosaic with mostly S cones.

The information per cone in the optimal mosaic for each

accommodation wavelength (parameterized as S cone PSF width)

is plotted in (Fig. 8). Information transmission rates were highest

when L cone light was focused sharply and S cone light was

blurred. Although the per cone advantage of focusing long

wavelength light is small (,3%), multiplying by the number of

cones in a retina gives a significant increase in the total amount of

transmitted information. Interestingly, the worst choice is to

accommodate between the L and S peak sensitivities. Focusing short

wavelength light could be advantageous if, due to some other

Figure 7. S channel vs. L channel chromatic aberration. (a) As
the eye accommodates, the S cone and L cone PSFs trade off. The PSF
can be decreased in width for one cone class at the cost of increasing its
width for the other. Widths shown are one half of the radius that
enclosed 90% of the PSF. (b) The LS information curve is shown for
varying accommodation. When the lens focuses shorter wavelengths,
the optimal mosaic favors S cones (blue line). When the lens focuses
longer wavelengths, the optimal mosaic favors L cones (red line).
doi:10.1371/journal.pcbi.1000677.g007
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constraint, it was impossible to focus long wavelength light

sufficiently. In this case, the optimal retina has mostly S cones,

which may be related to the existence of a few species with S cone

dominated retinas [5].

One might wonder whether the apparently small excess of

information (,3%) in the optimal accommodation wavelength in

Fig. 8 actually confers a significant selective advantage. It is worth

noting that small selective advantages have a multiplicative effect

over generations, and, just like compound interest, can pay large

dividends over evolutionary time.

The optimal cone mosaic varies with eccentricity
Our analysis thus far has considered the overall proportions of

cones of different classes. An additional observation is that the

fraction of S cones in the human retina increases somewhat with

eccentricity [1,65,66]. We wondered whether this observation

might also be accounted for by our theory. Two relevant factors

that are known to decrease with eccentricity are the overall cone

density of the mosaic [1] and the optical density of short-

wavelength filtering macular pigment [50]. The effect of reducing

macular pigment density will be to reduce the SNR advantage of

the L and M cones over the S cones, and to the extent this has an

effect this would tend to increase the relative proportion of S

cones. Our analysis of robustness presented above, however,

indicates that this effect will be small but in the right direction, and

preliminary calculations (not presented here) indicated that alone

it would be insufficient to account for the increase in ,1.5% to

,7% S cone percentage from the central fovea to the periphery.

We thus focused on the effect of the decrease in overall cone

density. As the distance between cones becomes large relative to

the blur, the number of cones in each blurred and redundant block

decreases, reducing the significance of the blur in the optimization.

Since chromatic aberration has a greater effect on the S-channel,

increased sparseness of the array tends to increase the fraction of S

cones in the optimal mosaic. To see this, we kept the extent of the

blur fixed, and used the scale invariance of natural images to treat

the image pixels as having the separation of cones at larger

eccentricities that are viewing the same scene from a greater

distance. Repeating the analysis for the optimal mosaic, we found

that the predicted S cone fraction increases with decreasing cone

density (Fig. 9). Overall the predicted optimal cone fractions are

somewhat higher than seen in Curcio et al. [1], but these

measurements were accumulated from only two retinas and

variations should be expected between individuals. Moreover, our

estimates of the exact optical parameters to use for the periphery

are not currently precise enough to support inferences about the

significance of predicted differences of a few percent. The key

point we wish to emphasize at this juncture is thus that our theory

is qualitatively consistent with an increase of S cone proportion

with eccentricity.

Robustness of results
The results presented here depend on many estimated and

modeled quantities and thus it was important to test how plausible

variations in these quantities might affect the optimal mosaic. First,

we checked that our results were insensitive to the details of the

model of the eye’s optics, and confirmed that essentially the same

results were obtained when we used the Marimont and Wandell

[61] model of the eye’s chromatic aberrations.

We also approximated the cone signal as a Gaussian channel so

that an explicit functional form for information could be

manipulated. As a check, we directly estimated the information

in the cone signal from the histogram of isomerizations rates

binned according to the Poisson noise at each rate. This procedure

gave a similar result to the Gaussian approximation – our results

follow from the similarity of SNR in the L and M cone channels,

and the smaller SNR in the S cone channel. The relative sizes of

SNR in each channel are a consequence of the cone spectral

sensitivities (which peak at similar wavelength for L and M cones,

but at significantly shorter wavelength for S cones) and the

transmittance properties of the ocular media, which selectively

attenuate short wavelengths.

Figure 8. Effects of accommodation on information transmis-
sion rate. The information transmitted per cone is highest for an
optimal arrangement of L and S cones when light is focused for L cone
signals, and consequently more blurred for S cone signals. Results are
shown for an array of N = 1000 cones; similar curves result for N
between 103 and 106.
doi:10.1371/journal.pcbi.1000677.g008

Figure 9. Optimal mosaic as a function of retinal eccentricity.
(Top) Variation of measured S cone proportion with retinal eccentricity
in human [1]. (Bottom) Proportion of S cones increases with eccentricity
in the optimal array.
doi:10.1371/journal.pcbi.1000677.g009
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To extrapolate information to large arrays we used the power

law that gave a good fit for small arrays. We checked that the

results were insensitive to the overall size of the array by varying

the number of model cones (N in (4)) between 1000 and 1,000,000.

In these extrapolations we treated noise in photoreceptors as being

dominated by photon noise and therefore independent. It should

be kept in mind that noise correlations can significantly affect the

total information transmitted by a population of cells [67].

However, substantial noise correlations are not expected in cone

isomerization rates, since in daylight these fluctuations are

primarily controlled by the stochastic arrival of photons.

In treating chromatic aberration we modeled optical blur as

making all cones within the scale of the blur completely redundant.

In fact, the redundancy decreases with separation even within

blurred regions. However, since the significant factor is the relative

range of the L, M and S channel blurs, we do not expect more

detailed modeling to affect our conclusions.

Like the lens of the eye, our camera lens also exhibits chromatic

aberration, blurring short wavelengths more than longer ones. The

effect is small, and only apparent at the highest spatial frequencies.

We estimated the effect of camera blur on our results in two ways.

First, we deblurred the S cone channel (adding power at high

spatial frequencies) to compensate for the reduction in power at

high spatial frequency due to the camera lens. Our analysis was

robust to this correction. Second, we blurred the L and M cone

channels (reducing power at high spatial frequencies) to match the

blur in the S cone channel. Again, the results and conclusions were

unchanged.

Discussion

Many mammals exhibit a significant excess of L cones over S

cones (Fig. 10). Meanwhile, humans exhibit, on average, only a

small excess of L cones over M cones [1] but the relative

proportion of L and M cones varies significantly between

individuals [12]. There is also topographic variation in cone

proportions within a mosaic – e.g., in human retina the proportion

of S cones in the central retina exceeds the proportion of S cones

in the peripheral retina [1]. All these basic facts about the design of

the photoreceptor mosaic seem to be explained by a single

hypothesis – given the filtering properties of the eye and the optics

of chromatic aberration, the overall mosaic arrangement combines

with lens accommodation to maximize information transmitted

from natural scenes.

Any optimization argument of this kind must hold fixed some

characteristics of the system while varying others. We held fixed

the number of cone types, their spectral sensitivities and the

absorption of the ocular media and tested how varying cone

proportions and lens accommodation wavelength changed the

amount of information conveyed by the array. We treated these

factors as variable because we were seeking underlying rationale

for the observed cone proportions and because accommodation

wavelength is under behavioral control. We could have instead

varied the absorption of the ocular media or the number of cone

types while holding the other factors fixed. This type of analysis

will be interesting for deriving the predictions of the theory for

other species.

As in the present work, we expect that in most vertebrate eyes a

larger fraction of the light in natural scenes to which S cones are

most sensitive never reaches the photoreceptor layer, giving an

small advantage to long wavelength cones. This is because ocular

media (cornea, aqueous humor, lens and vitreous) filter out more

short wavelength light than long wavelength light [54,68].

Humans, lower primates, and diurnal sciurids (squirrels), have

an additional macular pigment that filters out even more short

wavelength light to protect the retina from UV radiation

[26–28,69–71]. Of course, if natural scenes had much more

power at short wavelengths, S cones would still have an advantage

despite attenuation in the optical media. Thus, the disadvantage

for S cones is the combined result of similar power at short and

long wavelengths, and selective attenuation.

The present analysis offers a unified explanation for why S

cones are rare, why they increase toward the periphery, and why a

large variation in L/M ratio can be tolerated. A useful way to

consider these results is to imagine how one might ‘‘build’’ a

retina, cone-by cone, with the goal of transmitting as much

information as possible. First consider the case where only L and S

cones are available. Since the signals S cones receive are smaller, L

cones are individually more valuable. Consequently, a builder

would begin by using only L cones. However, as the array of L

cones becomes large, each additional L cone adds progressively

less value because its signals become increasingly redundant with

its neighbors. Eventually the value of an additional L cone

decreases sufficiently so that adding an S cone becomes

advantageous, despite its smaller relative information capacity.

The end result is an optimal array with mostly L cones, and a few

S cones. When optical blur is included in the analysis, the

redundancy in S cone signals is increased relative to the

redundancy in L cone signals, making S cones even less valuable.

Thus L cones dominate the array.

For L and M cones the situation is different. Since these two

cone types carry similar amounts of information, adding an M

cone instead of an L cone becomes advantageous much sooner,

and the optimal array is more evenly mixed. Furthermore, optical

blur affects L and M cone signals similarly because their spectral

sensitivities are similar. The blur renders L and M cone signals -

already quite redundant - even more redundant. The result is that,

within the spatial extent of the blur, L and M cones have roughly

equivalent value. Consequently, the information transmitted by

the array changes little over a wide range of L/M proportions,

although plausible variations in the parameters can give a small

advantage to L or M cones. The latter might explain why, despite

large variations between individuals, the human eye has, on

average, more L cones, while the baboon eye has more M cones

[9].

Our findings fit with a growing body of evidence that the retina

allocates limited resources to maximize the information transmit-

ted from natural scenes, subject to biophysical constraints. For

Figure 10. Dominance of L cones over S cones across species.
Measured S cone proportion is shown for a variety of animals
[2,9,59,82–90]. For some animals, two measurements at different
locations on the retina are shown. Large variation in L cone proportion
indicates dorso-ventral asymmetries, like those discussed in [90].
doi:10.1371/journal.pcbi.1000677.g010
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example, this principle seems to explain the excess of OFF

ganglion cells in the retina [72], the overlap of ganglion cell

receptive fields [58], cone density distribution [73], the distribution

of information traffic in the optic nerve [74], and the distribution

of its axon calibers [75] (see the review [76]). Snyder, Stavenga, &

Laughlin [33] pioneered this approach to understanding the

design of photoreceptor arrays as maximizing information under

various constraints. Their effort considered trade-offs between

spatial acuity and contrast sensitivity given white noise stimuli at

different intensities, but did not consider the chromatic organiza-

tion of natural scenes. In a related approach to analyzing the

photoreceptor array, Bayesian decision theory was used to

investigate tradeoffs between monochromatic and dichromatic

vision [77].

The present findings also extend a large body of work on the

evolution of wavelength sensitivity. There are many examples

where the peak sensitivity of a photopigment matches the most

prevalent wavelength in the environment (e.g., cones of fish in

Lake Baikal, [78]). There are also examples where the behavioral

niches of organisms seem to influence their photoreceptor

sensitivities (e.g., UV receptors in insects and birds for seeing

flower patterns, and the UV receptor of falcons which detects vole

urine trails that fluoresce in the ultraviolet [79]. A number of

authors have, for various species, considered the optimal choice of

cone opsin spectral sensitivity [21–24,80,81]. For primates, it has

been suggested that trichromacy evolved to assist detection of ripe

fruit on a green background [21]. It has been further argued that

the spectral sensitivities of the three cone types in human might

maximize information transmission from natural scenes under the

constraints of chromatic aberration, diffraction, and input noise

particularly in dim light [25]. These arguments suggest that the

molecular properties of the cone opsin are shaped to maximize the

information they transmit about behaviorally relevant stimuli,

and here we find the same for the structure of the photoreceptor

array.

Materials & Methods

Alternative formulation for single cone information
Our main results can be derived using an alternative estimate of

the single cone information that does not make use of the Gaussian

channel approximation, and instead directly applies Shannon’s

formula to the individual cone isomerization distributions. The

cone signal distributions are discretized into bins with boundaries

placed 2 noise standard deviations from each bin’s center. This

standard deviation was determined by assuming Poisson photon

noise, for signals with mean intensity equal to the intensity at the

center of each bin. Fig. 11 is a plot of the main result from our

paper, using this method for calculating the single cone entropies.

The results are qualitatively and quantitatively very similar. Note

that the precise values of the cone SNRs were shown in Results to

have little influence on the on the optimal cone proportions.

Image database
Our natural image database consists of images taken in a variety

of environments and lighting conditions. Most are daylight images

from dry-season Botswana, but we also have images of Botswana

at other times of year, Philadelphia, and locations in Southern

India. Within this set we have collected low light intensity (dusk /

dawn) images, close-ups, and images of the horizon with split sky/

ground. The diversity of the images allows us to investigate how

different color environments, behavioral needs, and activity

periods (nocturnal vs. diurnal vs. crepuscular) affect the demands

on spatial-chromatic information processing.

Camera properties
Images were acquired with a Nikon D70 digital camera writing

to ‘‘RAW’’ format. This format gives approximately 9.5 bits per

pixel for each color channel (see http://www.majid.info/mylos/

weblog/2004/05/02-1.html). Images were collected on a

201463040 photocell array with interleaved red, green, and blue

sensors, then interpolated (using nearest-neighbor interpolation

within each sensor class) to estimate the full red, green, and blue

camera response at each pixel location. Following this interpola-

tion, each image was downsampled by a factor of 2 to minimize

aliasing artifacts from the interleaved red, green, and blue sensor

sampling of the camera. At the down-sampled resolution

(100761520), the camera resolution was 46 pixels per degree of

visual angle. In our analyses we used scale invariance of natural

scenes to regard the pixels as having the separation of foveal cones

viewing the same scenes from a greater distance. Additional detail

follows.

Raw image format. The D70 allows storage of images in a

number of different formats. Nikon Electronic Format (NEF),

records ‘‘raw’’ sensor values. This is a proprietary Nikon format,

but its parameters are publicly available. NEF images store 6.1

megapixel 12 bit data from the image sensor as an approximately

5.00MB file. In addition, public domain software, dcraw (www.

cybercom.net/,dcoffin/dcraw/), is available to read NEF images

and convert them to Portable Pixel Map (PPM) format images. We

used dcraw to convert the image data from NEF to PPM format,

Figure 11. Optimal mosaic using photon noise binned
calculation of single cone information (see text). Results are
very similar to those in Fig. 5, using a Gaussian channel approximation.
(Top) Information represented by a mixed LM array as a function of the
percentage of L cones in the array. (Bottom) Information represented by
a mixed LS array.
doi:10.1371/journal.pcbi.1000677.g011
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which is readable by MATLAB (The Mathworks, Natick, MA).

Dcraw offers a number of options for the output files. We used it to

extract the image in documentm (no color interpolation) by using

the -d flag, and to write 48-bpp (48 bits per pixel, 16 bits per color

channel) PPM file by using the -4 flag.

Geometric information. The D70’s sensor provides a

resolution of 2014 (v)63040 (h) pixels. The angular resolution of

the camera was established by acquiring an image of a meter stick

from a distance of 123 cm. The corresponding angular resolution

is 92 pixels per degree both horizontally and vertically.

Mosaic pattern. The D70 employs a mosaiced photosensor

array to provide RGB color images. That is, each pixel in a raw

image corresponds either to an R, G, or B sensor. R, G, and B

values can then be interpolated to each pixel location. Raw mosaic

sensory values extracted by dcraw were used for our various

calibration measurements described below. The mosaic pattern of

the D70 camera, starting in the upper left corner of the image, is

B G

G R

This sub-mosaic pattern then tiles the rest of the full 201463040

image.

Dark subtraction. Digital cameras typically respond with

positive sensor values even when there is no light input (i.e. when

an image is acquired with an opaque lens cap in place.) This dark

response can vary between color channels and with exposure

duration. We measured the dark response of each color channel as

function of exposure duration. This was done by placing a dark

lens cap on the lens, setting the aperture to its minimum (f22) and

acquiring data in a room with the lights turned off. The dark

response values were subtracted from actual response values as

part of our image preprocessing.

Image quantization. Although the D70 has native 12-bit per

pixel intensity resolution, the D70 appears not to write the raw 12-

bit data to the NEF file. Rather, some quantization/compression

algorithm is applied which converts the image data from 12 bit

intensity resolution to approximately 9.5 bit resolution (www.

majid.info/mylos/weblog/2004/05/02-1.html). Dcraw corrects

for any pixel-wise nonlinearity introduced by this processing (see

description of verification below), but it cannot, of course, recover

the full 12-bit resolution. The pixel values in the file extracted by

dcraw range between 0 and 16400. These are the values we

analyze in all that follows. We do not have a direct estimate of the

true intensity precision of this representation.

Response linearity. Fundamental to digital camera

calibration is a full description of how image values obtained

from the camera relate to the intensity of the light incident the

sensors. Two common properties of digital camera sensor

responses can complicate calibration. First, the camera response

function may be nonlinear, so that a doubling of the input intensity

does not result in a doubling of the sensor response. Second,

camera responses are quantized, rather than varying continuously

with the intensity of the light input. We characterized the D70’s

response as a function of light intensity.

To measure the linearity of the camera response, we measured

the light reflected from a white reflectance standard at each of 55

exposure durations, 1/8000 s to 30 s. The aperture was held

constant at f11. Response values were obtained by extracting and

averaging RGB values from a 60660 pixel region that contained

image values from standard.

The intensity values corresponding to the fastest exposure

durations were not substantially different from the dark response

values. Also, the camera saturated in at least one channel for

exposure durations greater than 1/3 s. Therefore, data were

analyzed only for exposure durations longer than 1/2000 s, and

shorter than 1/3 s. The data deviated from linearity for shorter

exposure durations. The linear range, expressed in terms of

camera response values is from 100 sensor units to the saturation

value of the sensors, 16400 sensory units. These data did not

distinguish two possible causes of the deviation from linearity. This

effect may have been due to changes in the camera’s shutter

precision at short exposure durations or there may have been be a

nonlinearity in the camera sensor response at low response levels.

To distinguish these two possibilities, we made additional

measurements with camera duration and aperture held fixed at 1/

100 s and f14, respectively. We varied the light intensity by placing

neutral density filters between the light source (projector) and the

white standard. The camera sensors were linear at high light levels

(below saturation) but clearly nonlinear at low light levels (sensor

response less than 100 units.) These data suggest that the

nonlinearity is in the camera sensor response at low response

levels. The camera’s shutter precision appears to operate properly

at exposure durations at least as short as 1/100 s.

Aperture test. If a camera’s aperture is operating properly,

the aperture size (f-number) expresses the relative amount of light

reaching the photosensors, per unit area. For the same light

source, the intensity per unit area for f-number x, I(x), relative to

the intensity per unit area for f-number y, I(y) is given by: I(x) = (x/

y)2 I(y). We tested aperture performance by measuring the sensor

response as a function of exposure duration for all color channels,

at three different aperture sizes (f5, f11, and f16). Applying the

above relation, we compared the response function at f5 to the

response functions at f11 and f16 transformed to their equivalent

f5 values. After the correction is made, the sensor response as a

function of exposure duration in each color channel for aperture

sizes f11 and f16 should be coincident with the response function

for the corresponding color channel at aperture size f5. The

response functions were coincident after correction. As a

convergent measure of aperture reliability, we directly measured

the sensor response to a fixed source image and exposure duration

at various aperture sizes (23 aperture sizes between f1.8 and f22)

and confirmed that the response was proportional to the square of

the f-number.

Spectral response. We measured the spectral sensitivities of

the camera sensors. A slide projector, the Nikon D70 Camera, and

a spectroradiometer were positioned in front of the white test

standard. Light from the projector was passed through one of 31

narrowband monochromatic filters, with peak transmittances at

10 nm intervals between 400 and 700 nm. For each filter, a digital

picture (f-number held at 1.8 and varying exposure duration) and

a spectroradiometer reading were taken. This process was

repeated, once with ascending wavelengths and once with

descending wavelengths. At each wavelength, The R,G,B data

was dark subtracted and inversely scaled by the exposure duration

and the total light power measured by the spetroradiometer to

yield the spectral sensitivity at that wavelength.

The measured spectral sensitivities were used to generate

predictions of the camera sensor response to arbitrary light

sources. To check the accuracy of our model, we compared

predicted and measured response values for the 24 swatches of the

Macbeth color checker. For each swatch, we took a spectro-

radiometer reading and a digital photo. The sensor RGB

responses were well predicted by the measured camera spectral

sensitivities and a measurement of the light spectrum incident at

the camera.

Predicted L, M, and S cone response. A linear mapping

derived from our measured camera spectral sensitivities and the
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Stockman & Sharpe (2000) cone spectral sensitivities was used to

transform signals represented in RGB image space into equivalent

L, M, and S cone coordinates. In making this transformation, we

took the aperture and exposure duration for each image into

account. To the extent that L, M, and S cone signals are not a

linear transformation of R, G, and B camera signals, the linear

transform will have some error, including the possible prediction

of negative cone isomerization rates. This could occur when pixel

values are near zero or when one color channel is much higher

than the others (e.g., R is high, but G and B are near zero).

However, because we used bright daylight images and because

color channels in natural images are highly correlated, negative

LMS values were not observed in our images.

The LMS coordinates were scaled to yield estimates of

photoisomerization rates for each cone class (R* s21). The scaling

factors were estimated by computing cone isomerization rates

from measured spectra using the procedures described by Yin,

Smith, Sterling, & Brainard [37] for guinea pig, but substituting

appropriate parameters for human foveal cones (human peak

photopigment sensitivities, optical densities, photoreceptor dimen-

sions, ocular media transmittance). These were then regressed

separately for each cone class against the corresponding cone

coordinate to yield the conversion factor for that cone class.
Camera chromatic Modulation Transfer Function. We

measured the spatial Modulation Transfer Function (MTF) for the

R, G, and B color channels. To do so, we imaged a high contrast

black and white grating at a series of camera distances and

computed the image contrast at the corresponding spatial

frequencies. The MTF was similar for the R and G channels,

but more severe for the B channel. We used the data to estimate

the spatial MTF of the L, M, and S cone image planes and as

described in the text verified that the different MTF of the camera

B channel did not influence our results.

Optical point spread function calculations
Point spread functions (PSFs) were estimated from wavefront

aberration measurements obtained for 13 subjects, reported by

Chen, et al. [14]. For each subject, the wavefront aberration

measurements characterize individual observer optical aberrations

and allow calculation of the PSF for various choices stimulus

wavelength, pupil diameter, and accommodative state. All of our

calculations were performed for a 3mm pupil. The code to convert

wavefront aberration measurements to polychromatic PSF as a

function of accommodation was kindly provided to us by Heidi

Hofer, along with the tabulated wavefront aberration measure-

ments required for the calculations.

We were interested in how the PSF seen by the L cones traded

off the PSF seen by the S cones as accommodation varied. For

each observer, we computed the PSF for each stimulus wavelength

(372 nm to 700 nm at 4 nm steps) for a range of accommodative

states (nominal wavelengths of accommodation 372 nm to 700 nm

at 4 nm steps). For each observer and accommodative state, we

then obtained the PSF seen by each cone class by weighting the

individual wavelength accommodative states by the spectral

sensitivity of that cone class. This provided individual observer

data on how the PSFs seen by the two cone classes varied with

accommodation. To combine data for each observer, we found for

each observer the accommodative state that minimized various

weighted sums of the widths of the PSFs seen by the L and S cones.

PSF width for this optimization was obtained from the circular

average of each computed PSF. For each choice of L and S cone

weights in the minimization, the optimized PSFs for each cone

class were circularly averaged within each observer and then

averaged across observers. The result of this analysis is shown in

Fig. 6, where the computed points trace out the desired tradeoff,

with widths obtained from the final average across observer PSFs

for each choice of S and L cone weights. The endpoints of the

curve shown provide the minimum width PSF obtainable for each

of two cone classes, when no weight was attached to the width of

the PSF for the other class. It was important to separately optimize

the accommodative state for each observer for each weight choice,

because for any particular weight choice different observers’

PSFs were optimized by different nominal wavelengths of

accommodation.

The smooth fit to the PSF tradeoff shown in Fig. 6 was used to

resample the tradeoff frontier for the calculations shown in Fig. 7.

We also used the general procedure described above to find the

PSFs seen by the L, M and S cones when the accommodative state

was set to minimize the average width of the L and M cone PSFs.
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