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TOP ICAL REVIEW

Receptive fields and functional architecture in the retina
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Functional architecture of the striate cortex is known mostly at the tissue level – how neurons
of different function distribute across its depth and surface on a scale of millimetres. But
explanations for its design – why it is just so – need to be addressed at the synaptic level, a much
finer scale where the basic description is still lacking. Functional architecture of the retina is
known from the scale of millimetres down to nanometres, so we have sought explanations for
various aspects of its design. Here we review several aspects of the retina’s functional architecture
and find that all seem governed by a single principle: represent the most information for the
least cost in space and energy. Specifically: (i) why are OFF ganglion cells more numerous than
ON cells? Because natural scenes contain more negative than positive contrasts, and the retina
matches its neural resources to represent them equally well; (ii) why do ganglion cells of a given
type overlap their dendrites to achieve 3-fold coverage? Because this maximizes total information
represented by the array – balancing signal-to-noise improvement against increased redundancy;
(iii) why do ganglion cells form multiple arrays? Because this allows most information to be sent
at lower rates, decreasing the space and energy costs for sending a given amount of information.
This broad principle, operating at higher levels, probably contributes to the brain’s immense
computational efficiency.
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David Hubel often remarked (paraphrasing Lord
Rutherford) that, if an experiment required statistics, it
was probably not worth doing. As a student, I (P.S.)
took this to mean that we should be looking for large
effects and not wasting effort to tease out small ones
from noise. Of course, that was easy to say once he and
Torsten Wiesel had discovered their huge effects, such
as sensitivity of cortical neurons to stimulus orientation
and direction, binocular receptive fields, orientation and
ocular dominance columns, and the drama of monocular
deprivation – effects so robust that we are now celebrating
their 50th anniversary!

Unfortunately, through no fault of David’s, I also
took the comment to mean that the brain works
deterministically, not statistically. This notion is easily
entertained while exploring receptive fields with high
contrast stimuli. When you find just the right ‘trigger
feature’, the neuron fires sharply and reliably – so why
fuss about statistics or the brain’s supposed stochastic
nature? Nor were we to concern ourselves with what David
and Torsten term ‘theory, sometimes called computation’,
which they still regard as ‘an example of illnesses that
scientific fields can be subject to’ (Hubel & Wiesel, 2004).

Of course, while we were preoccupied for decades simply
describing compelling effects and architectures, any effort
to use theory to explain them, that is, to investigate why
they are organized just so, seemed misguided. But it was
not misguided; it was merely premature, and it was on the
wrong scale.

Functional architecture must eventually be studied on
the scale of synaptic circuits

Knowledge regarding functional architecture of striate
cortex has accumulated mostly at the tissue level – how
neurons of different function distribute across its depth
and surface – a scale of millimetres (Hubel & Wiesel,
2004). But explanations regarding the underlying design
must be addressed at the synaptic level – a finer scale
where connectivity is still unknown. For example, there
is no consensus regarding how many types of cell are
present, nor how to define a cortical cell type, nor even
whether ‘types’ really exist! Nor is it known how the
primary thalamic afferents connect to different cells, let
alone how these cells connect locally with each other (e.g.
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Callaway, 2005; Douglas & Martin, 2007; Xu & Callaway,
2009). There are good reasons for this continuing state of
ignorance.

One is technical: to identify a synapse requires 10 nm
resolution (the width of the synaptic cleft) whereas
conventional light microscopy resolves at best 200 nm.
Therefore, to identify a ‘circuit’ by light microscopy
requires inference to bridge this order of magnitude deficit
in resolution, and this led the boldest, most inspired
neuroanatomist, Ramón y Cajal, into serious errors.
Another challenge is posed by the devilish arrangements
along the vertical axis. One might have hoped that the
layering of cortical neurons would help in working out
their circuits. But within a layer, neurons are as diverse
as tree species in a tropical rainforest – and each type
connects differently across layers. This arrangement is
probably fundamental to cortical architecture – but it
renders pointless trying to understand a circuit by taking
the average connection and looking for broad patterns.
Working out the connections of one neuron, you will need
to travel tangentially for hundreds of micrometres to find
another exactly like it.

Electron microscopy offers the essential resolution,
easily identifying a synapse such as a thalamic bouton
contacting a dendritic spine. But it cannot identify either
the afferent that produced the bouton, nor the dendrite
that produced the spine. The processes become too fine
(<100 nm) to trace through conventional serial sections;
and even if one could, the distances are orders of
magnitude too great. New technologies are changing all
this, but for now if you want to consider neural architecture
in sufficiently fine detail to explain a design, you must
turn to the retina – where both function and architecture
at the circuit level have been quantified. And there one
soon discovers that the explanations require both of David
Hubel’s bêtes noir: statistics and theory.

Understanding circuits requires statistical reasoning
and ‘theory’

Vision is limited by statistical fluctuations whose sources
are now fairly well identified. For example, when a short
row of retinal ganglion cells is excited, we perceive an edge.
But if the edge has low contrast (∼1%) and appears only
briefly (∼100 ms), whether we see it or not is a matter of
chance. In bright light, the chance is decent, near 70%, but
in dim light, we are reduced to guessing. Light intensity
matters for a purely statistical reason: photons (light
quanta) arrive stochastically. Obeying Poisson statistics,
their signal-to-noise ratio (SNR) equals the mean number
of photons (n) divided by n. This explains why detection,
say for birding or hunting, is improved by expensive optics
– they collect photons more efficiently.

One can compute (using a model that includes the eye’s
optics and the efficiency of photon capture) how much

information should be available from a given stimulus for
detection by neural circuits. Compared to this calculation,
actual detection measured psychophysically is less sensitive
by about 10-fold, and this factor is constant across light
intensities. This difference represents a loss of information
due to neural noise within the retina (Borghuis et al.
2009). Here, too, the cause is statistical fluctuation – of
transmitter quanta at each of the retina’s two synaptic
stages. Because transmitter quanta also follow the Poisson
statistics, the neural signal-to-noise ratio improves as n.
It seems shocking that neural noise should degrade visual
sensitivity by a full log unit. Why would natural selection
produce such shoddy circuits when we might potentially
see 10-fold better – and possibly be 10-fold smarter? This
question certainly warrants scrutiny of the circuit designs.

It emerges that retinal circuits are not ‘optimal’.
They could be bolstered in various ways to relay more
information and thus improve vision. For example, SNR
could be improved by adding more synapses and/or by
raising release rates. But synapses occupy space; and
transmitter quanta discharge ionic batteries, whose
recharging requires energy (Attwell & Laughlin, 2001).
Moreover, increased investment brings diminishing
returns; for example, doubling SNR requires quadrupling
transmitter quanta.

Here, using four examples from mammalian retina
(guinea pig), we explore the broad hypothesis that
neural circuits are designed to send a given quantity
of information using the least resources. Following
sensible rules and making compromises, the retina: (i)
allots resources according to the probable return of
information; (ii) structures neuronal arrays to maximize
information by balancing increased SNR against increased
redundancy; (iii) uses multiple parallel circuits to send
more information at lower rates, and thus at lower cost in
space and energy.

Each of our examples requires calculations based on
Shannon’s equations – that is, on ‘information theory’.
‘Information’ in Shannon’s sense is a signal statistic that
broadly limits the quality of decisions that are based on
observations of the signal. For a channel with Gaussian
signals and additive Gaussian noise, Shannon’s formula
for information is intuitive:

I = 1/2 log2(1 + SNR) (1)

where SNR, the signal-to-noise-ratio, is the signal variance
divided by the noise variance. This formula amounts to
a summary statistic that distills communication power
from three key aspects of a signal – its bandwidth (here
parameterized by signal variance), how well the band-
width is used (here with a Gaussian distribution), and the
noise (here parameterized by noise variance). Since natural
visual stimuli are not Gaussian we will sometimes need a
more general formula. Given a probability distribution
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p (c1, . . . cN) for the joint responses of N signalling
elements, the total amount of information that could be
carried by the signals is given by a quantity called the
‘entropy’ of the signal :

H = −
∑

c1,...cN

p (c1, . . . cN) log 2[p (c1, . . . cN)] (2)

In our analyses, the loss of information to noise is
approximately incorporated in this formula by discretizing
the ci into distinguishable signalling levels that reflect the
noise.

Since the retinal output provides the basis for all visual
behaviour, and not just a single well-specified task, a
broad statistic of this kind is necessary to evaluate retinal
performance. A precise formulation of our hypothesis is
that, given the information required for behaviour, the
retina minimizes its computational costs. In practice, it
is often easier to specify the cost in terms of amount of
resources expended by a circuit and to ask how it should
then be organized to maximize information. The goal of
such a theory is 2-fold – to explain the underlying rationale
for known structural and functional organization, and
to predict new effects that would guide the design of
experiments. Eventually such a strategy applied to the
whole brain might help explain how our brain can
deliver such amazing computing power in a volume no
greater than a laptop and drawing no more power than a
refrigerator light bulb.

Some ‘whys’ in retinal design

Resource allocation by ON and OFF ganglion
cell arrays

The cone’s representation of light intensity is converted
at the first retinal synapse to a representation of local
contrast and then routed to two classes of second order
(bipolar) cell. One class depolarizes to positive contrasts
(ON), and the other depolarizes to negative contra-
sts (OFF) (Fig. 1A). Surprisingly, more resources are
devoted to circuits for negative contrasts: OFF bipolar cells
outnumber ON bipolar cells by 2-fold (Ahmad et al. 2003).
This asymmetry carries forward to the ganglion cells: OFF
cells have narrower dendritic fields (Fig. 1B and C) and
1.3-fold more overlap (Borghuis et al. 2008), implying
an OFF/ON ratio of ∼1.7. Similar differences are found
across species (rat: Morigiwa et al. 1989; rabbit: DeVries
& Baylor, 1997; monkey: Chichilnisky & Kalmar, 2002;
human: Dacey & Petersen, 1992) and across cell types, (e.g.
‘midget’ and ‘parasol’ in human; Dacey & Petersen, 1992).
These differences persist at least as far as striate cortex.

Another key difference is that OFF dendritic arbors
branch more densely (Fig. 1B; Morigiwa et al. 1989; Kier
et al. 1995; Xu et al. 2005; C. Ratliff, Y.-H. Kao, P. Sterling
& V. Balasubramanian, unpublished observations).

Figure 1. Dendritic arbors of OFF ganglion cells are smaller but
more densely branched
A, retina in radial view. The first synapse routes the photosignal to two
classes of bipolar neuron, one excited by negative contrasts (OFF cells)
and another class excited by positive contrasts (ON cells). These signals
are rectified by voltage-sensitive calcium channels at the bipolar cell
synapses to OFF and ON ganglion cells. The ON arbor is broad and
sparsely branched whereas the OFF arbor is narrower and more
densely branched. B, ON and OFF ganglion cells (brisk-transient class)
in flat view. Cells were injected with fluorescent dye and
photographed in the confocal microscope. The ON arbor is broad and
sparsely branched whereas the OFF arbor is narrower and more
densely branched. C and D, dendritic field area is smaller for OFF than
for ON cells, but total dendritic lengths are the same and collect similar
numbers of bipolar synapses (Xu et al. 2008) (adapted from C. Ratliff,
Y.-H. Kao, P. Sterling & V. Balasubramanian, unpublished
observations). IPL, inner plexiform layer.
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Consequently, despite its narrower dendritic field, an
OFF cell has the same total dendritic length as
the corresponding ON cell (Fig. 1D; C. Ratliff, Y.-H.
Kao, P. Sterling & V. Balasubramanian, unpublished
observations); thus they receive similar numbers of
synapses (Xu et al. 2008). Given the excess of OFF cells,
this implies that the OFF array employs ∼1.7-fold more
excitatory synapses. In short, the OFF array, being denser
than the ON array, allocates more total resources to
represent a scene. An individual OFF cell uses roughly the
same resources as an ON cell but concentrates on a smaller
region of the scene (C. Ratliff, Y.-H. Kao, P. Sterling & V.
Balasubramanian, unpublished observations). This leads
to a theoretical question: why should the retina (and later
stages of the visual system) devote more resources to OFF
cells?

Our broad hypothesis predicts that the excess resources
devoted to OFF circuits should be matched to an excess of
information present in negative contrast regions of natural
scenes. This suggests, surprisingly, that natural images
contain more dark spots (negative contrasts) than bright

Figure 2. Natural images contain more negative than positive
contrasts at all scales. Correspondingly the optimal mosaic
contains more OFF cells
A, centres of difference-of-Gaussians filters superimposed on an
image. B, contrast distributions at three scales: the distributions are
skewed, and negative contrasts are more abundant. C, proportion of
negative, positive and subthreshold (<3%) contrasts. At all scales
negative contrasts are ∼50% more numerous. The proportion of
subthreshold contrasts declines with scale because distributions in
B flatten with increasing centre radius. D, in the optimal mosaic OFF
filters are more numerous and smaller than the ON filters. Here 16
filters cover 25 image pixels, and information in bits is maximized
when 12 of the filters are of the OFF type (adapted from C. Ratliff,
Y.-H. Kao, P. Sterling & V. Balasubramanian, unpublished observations).

spots (positive contrasts). This was tested quantitatively
by employing a standard model of a centre-surround
receptive field (C. Ratliff, Y.-H. Kao, P. Sterling & V.
Balasubramanian, unpublished observations). This is a
difference-of-Gaussians filter (Rodieck, 1965), divisively
normalized (Tadmor & Tolhurst, 2000). This filter mea-
sured local spatial contrast at an image point (x,y) as

Contrast(x, y) = I c(x, y) − I s(x, y)

I s(x, y)
, (3)

Here I c and I s are the intensities measured by normalized
centre and surround Gaussian filters centred at (x,y). The
relative extents of the centre and surround were taken to
lie in the physiologically measured range (e.g. Linsenmeier
et al. 1982); the divisive normalization captured the
ganglion cell’s adaptation to local mean luminance (Troy
& Robson, 1992; Brady & Field, 2000). Thus, the filter
measured contrast as the per cent difference in intensity
between centre and surround: a positive response meant
that the centre was brighter than surround, and a negative
response meant that the centre was darker than the
surround.

Images were selected from a standard set (van Hateren
& van der Schaaf, 1998) and convolved with the filter
to measure contrast at every location (Fig. 2A, B and C;
C. Ratliff, Y.-H. Kao, P. Sterling & V. Balasubramanian,
unpublished observations). For all filter sizes, the
distributions of local contrast peaked sharply at zero,
and negative contrasts were about 50% more numerous.
The excess of negative contrasts was robust to changes
in receptive field shape and divisive normalization, thus
matching the prediction from retinal architecture (Ratliff
et al. 2009). The dark–bright asymmetry arises from
the skewed intensity distribution in natural scenes (low
peak, long tail, approximately log-normal form; Richards,
1982) and persists across scales because of the presence
of long-range spatial correlations (Field, 1987; Ruderman
& Bialek, 1994; Simoncelli & Olshausen, 2001). Having
found a clear asymmetry for natural images in their
numbers of dark and bright regions, and the statistical
origin of this effect, we asked what mosaic of ganglion cells
selective for dark and bright contrasts would maximize the
information transmitted from natural images.

Optimal mosaics use more OFF cells. Given the excess of
negative contrasts, it is natural to hypothesize that the
optimal mosaic should have more OFF cells. To see this,
suppose first that the retina contains only one ganglion cell.
Should the cell be OFF or ON? Evidently, it should be an
OFF cell because it is more likely to respond to a natural
image and hence will be more informative. This excess
should persist for denser arrays. To further analyse this
idea we made a model of difference-of-Gaussian filters,
followed by a rectifying non-linearity that transformed
negative or positive filter responses into 10 discrete, equally
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probable firing levels (Laughlin, 1981; Dhingra & Smith,
2004). The discretization and number of firing levels
reflected measurements of thresholding behaviour and
noise in ON and OFF ganglion cell responses (Dhingra
et al. 2003; Xu et al. 2005).

The information captured from an image by such
an array is equal to its response entropy (Shannon &
Weaver, 1949; Ruderman & Bialek, 1994). Entropy is
computed from the joint distribution of responses of
the array (eqn (2)). This was measured by scanning
rectangular arrays of ON or OFF filters across each
image to enumerate contrast responses. It was then asked:
what array geometries maximize information represented
from natural images (C. Ratliff, Y.-H. Kao, P. Sterling
& V. Balasubramanian, unpublished observations)? To

Figure 3. Neighbouring ganglion cells overlap their dendritic fields and receptive field centres
A, dendritic fields of an OFF/OFF pair typically overlap by about 40%. B, OFF/OFF and ON/ON neighbours share
similar temporal and spatial filters. Left: temporal filters superimpose (spike-triggered average of responses to
white noise). Right: spatial response profiles, fitted with difference-of-Gaussians functions, show that neighbouring
ganglion cell receptive fields overlap substantially. Here receptive field centres are spaced at 2.1 σ of the centre
Gaussian for (ON/ON) and 1.7 σ for (OFF/OFF), corresponding, respectively, to receptive field coverage factors of
4.1 and 6.1. C, spatial resolution of the array is set by cell density. Narrow receptive fields have low overlap and low
mutual redundancy, but also receive fewer synapses and thus have low signal-to-noise ratio (SNR). Wide receptive
fields have high overlap and high mutual redundancy, but also receive more synapses and thus have high SNR
(adapted from Borghuis et al. 2008).

study this, N = N OFF + N ON model receptive fields were
restricted to cover a region of fixed area with rectangular
OFF and ON arrays. The assumption of rectangular arrays
set cell spacing. For each partition of N into N OFF + N ON,
we independently varied ON and OFF receptive field
sizes to maximize information from each array. Figure 2D
shows an example where 16 receptive fields, covering
25 pixels, conveyed the most information when OFF
receptive fields were about twice as numerous as ON
and ∼20% narrower. For all choices of filter density
(1–100 pixels per filter) and number (10–100 filters),
as well as a wide range of receptive field shapes and
normalizations, the optimal mosaic always contained a
denser OFF array (C. Ratliff, Y.-H. Kao, P. Sterling &
V. Balasubramanian, unpublished observations).
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In summary, the question, ‘why does the retina
express an excess of OFF cells?’ seems to be answered.
This arrangement would produce the greatest gain of
information for the least overall cost. The result apparently
generalizes across cell types and species, although specific
comparisons require additional information, e.g. noise,
specific receptive field shapes, variations in environmental
image statistics, and differences in behaviour. But
meanwhile, a statistical analysis of natural images coupled
with a theoretical analysis of optimal information trans-
mission appears to explain an otherwise surprising
asymmetry. We also found that each individual OFF
element in the optimal mosaic transmits as much
information as a larger ON element. This correlates
with (and probably explains) the anatomical finding that
smaller OFF cells express similar numbers of synapses as
larger ON cells (Fig. 1D; Kier et al. 1995; Xu et al. 2008),
suggesting another principle to connect neural anatomy
and information transfer: equal numbers of synapses for
equal bits (Sterling, 2004).

Overlap of dendritic fields and receptive field centres

Ganglion cell mosaics have been described as ‘tiling’
the retina. Actually, however, neighbouring cells of the
same type substantially overlap their dendrites to produce
nearly 3-fold coverage (Wässle, 2004). Moreover, because
receptive field centres are somewhat broader than the
corresponding dendritic fields, their coverage is even
greater. For example, the coverage factor (field area × cell
density) for centres of the ON brisk-transient cell is ∼4,
and for the OFF brisk-transient cell, it is ∼6 (Fig. 3A and
B; Borghuis et al. 2008), and this is true for many other
cell types (DeVries & Baylor, 1997). As synapses distribute
on the membrane at a constant density (Freed et al. 1992;
Kier et al. 1995; Calkins & Sterling, 2007; Xu et al. 2008,
such extensive dendritic overlap uses many more synapses
than would be required for simple tiling. This leads to
another theoretical question: why should the retina devote
additional resources to such expensive overlap?

Cell spacing in an array sets the visual acuity required for
behaviour (Wässle & Boycott, 1991). Therefore, we took
cell spacing as given and expressed the degree of receptive
field overlap in terms of the standard deviation (σ) of the
Gaussian centre (Borghuis et al. 2008). This transformed
the question to: why do most ganglion cell arrays use 2 σ

spacing?
To explain receptive field overlap we recall that detection

performance based on the retinal output is set for many
tasks by the amount of represented information (Geisler,
1989; Cover & Thomas, 1991; Thomson & Kristan, 2005).
A larger receptive field collects more information – because
there is input from more cones, and this input is conveyed
by more synapses. This increases SNR, and information
increases as log2 of the SNR (eqn (1)). On the other

hand, for fixed cell spacing, larger receptive fields overlap
more (Fig. 3C); thus, some of the information carried by
neighbours is redundant. As a cell’s response range is finite,
the redundancy due to overlap tends to reduce the array’s
total information. Thus, we hypothesized that receptive
field overlap should balance the advantage of greater SNR
against the disadvantage of greater redundancy.

To estimate this trade-off, we approximated a ganglion
cell response as a Gaussian information channel and
related the information represented by an array of such
cells to the SNR of cones and the array overlap by the
formula

Iarray(σ) = 1/2ρ(σ)N log2(1 + f (σ)2SNRcone) (4)

Here N is the number of cells in the array; f 2

measures the SNR improvement of a receptive field
due to summation over cones (computed following
Tsukamoto et al. 1990); and ρ discounts for the
redundancy in the responses of overlapping array elements
(computed following C. Ratliff, Y.-H. Kao, P. Sterling
& V. Balasubramanian, unpublished observations). ON
and OFF arrays were modelled with fixed spacing
and difference-of-Gaussian receptive fields with shapes
(centre/surround ratio, surround strength) that had been
measured experimentally (Borghuis et al. 2008). Then the
redundancy discount ρ, the SNR improvement f 2, and the
total information in the array I array were functions only of
the size of the receptive fields, measured here in terms
of the centre standard deviation σ, while receptive field
overlap was quantified as receptive field spacing measured
in units of σ. Larger spacing in units of σ indicates less
receptive field overlap. The hypothesis was that receptive
field overlap would be set to maximize the array’s total
information (I array).

Optimal overlap in a ganglion cell array. Natural scenes
have a distinct statistical structure: spatial correlations
decay as 1/spatial frequency (Field, 1987); furthermore,
the distribution of intensities is skewed (Richards, 1982).
Taking natural scenes as input to our model ganglion
cell array (Fig. 4A; van Hateren & van der Schaaf, 1998),
information represented in the model array peaked when
the spacing was 1.9 σ (ON) and 1.8 σ (OFF) (Fig. 4B).
Thus, optimal overlap was slightly greater for the OFF
array. Furthermore, the range of measured receptive
field spacings (ON: 2.05 ± 0.50 σ; OFF: 1.86 ± 0.55 σ)
tightly bracketed the computed optimum. Importantly,
the optimum lay far from the ∼4 σ spacing required for
simple ‘tiling’ without overlap.

The putative advantage of overlap is to allow cells to
expand their centres and so improve SNR by averaging
spatially correlated signals. If so, overlap would confer no
advantage for images that lack spatial correlations. This
was tested by studying the optimal array for representing
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spatial white noise, which by definition lacks correlations
(Fig. 4A, right inset; Borghuis et al. 2008). The separation
of centres was fixed while centre width (hence overlap)
was varied. As overlap decreased (and spacing expressed as
σ increased), the total represented information gradually
increased (Fig. 4B). Thus, the optimal spacing minimizes
receptive field overlap. However, because the rate of
increase is slow, there is little advantage to selecting a
particular array spacing provided it is greater than ∼2 σ.
This suggests that the strongly conserved 2 σ spacing of
ganglion cell arrays is a specific adaptation to the statistical
regularities of natural images.

To test what properties of natural scenes set the optimal
spacing, we asked what array would be optimal for
representing ‘natural pink noise’, synthetic images that

Figure 4. Information about natural scenes is maximized when receptive fields are spaced at about
twice the standard deviation of the centre Gaussian
A, information was measured for a receptive field array stimulated with natural images. Left inset: array super-
imposed on small patch of natural image. Right inset: array superimposed on small patch of white noise. B,
information from natural images peaks at a receptive field (RF) spacing of ∼2 σ . Bars show the range of measured
receptive field separations for ON (open) and OFF (filled). Tested with synthetic ‘natural’ images (see main text),
information peaks at the same receptive field spacing as for natural scenes. Information represented from white
noise images increases monotonically, but gradually, with centre spacing in units of σ . Hence the optimal array
for white noise has large spacing and minimal receptive field overlap. C, optimal spacing is robust to differences
in width of receptive field surround: a 2-fold expansion leaves optimal spacing within the measured range (ON:
open bar; OFF: filled bar). Surround widths much larger (� 2-fold) than the measured width lead to widely spaced
optimal arrays (>3 s) with bumpy contrast sensitivity surfaces. D, optimal spacing is robust to changes in estimated
cone SNR: over four orders of SNR optimal array spacing remains within the measured range (adapted from
Borghuis et al. 2008).

mimic the statistical properties of natural scenes: the 1/f
power spectrum (Field 1987) and the skewed intensity
distribution (Richards, 1982). For these synthetic images,
the amount of information represented by the array is
greater than for natural scenes, because natural pink
noise, lacking higher order correlations, is less redundant.
Nevertheless, the optimal array spacing for the synthetic
images is identical to that for natural scenes (1.9 σ for
model ON receptive fields, Fig. 4B). This demonstrates
that the skewed intensity distribution and 1/f power
spectrum of natural images is sufficient to explain the
optimal array spacing (Borghuis et al. 2008).

These results were robust to changes in the model –
with a surround/centre ratio that was 2-fold wider than
measured, the optimum remained within the range of
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spacings measured in the retina. Moreover, across the
range of tested surround widths (1.25–5 σ), the optimal
array always showed substantial receptive field overlap
and never showed simple tiling (Fig. 4C). Likewise, the
optimal array overlap was essentially constant across five
orders of magnitude of variation in the assumed cone SNR
(Fig. 4D).

In summary, the question, ‘why do ganglion cells of
a given type extensively overlap their fields?’ seems to
be answered. Overlap, such that every point in space
is covered by ∼3 dendritic fields, causes the Gaussian
receptive field centres to be spaced at ∼2 standard
deviations (σ). For natural images, this balances increased
SNR against increased redundancy and thus maximizes
information represented by the array. This effect arises
from the statistical properties of natural scenes, for it is
absent when tested on images lacking spatial correlations
(white noise) and fully present when tested on artificial
images containing the key properties (natural pink

Figure 5. Firing patterns to different types of natural motion are similar within a cell type but different
across types
Here five cells were recorded simultaneously on a multi-electrode array. Each cell responded similarly to all three
motion stimuli. The brisk-transient and ON–OFF direction-selective (DS) cells responded with high peak rates and
low firing fractions whereas the brisk-sustained, ON DS, and local-edge cells responded with lower peak rates and
higher firing fractions. The brisk-transient and ON–OFF DS responses showed the lowest spike-time jitter across
trials whereas the brisk-sustained and local-edge responses showed the highest. For sluggish types, mean firing
rates were about half that of the brisk cell types (adapted from Koch et al. 2006).

noise). Thus, overlap in a ganglion cell array co-operates
with single-cell synaptic weighting to improve vision by
optimally representing the statistical structure of natural
scenes.

Information capacity of different ganglion cell types

The retina expresses ∼10–15 distinct types of ganglion
cell (Masland, 2001; Wässle, 2004). Each type responds to
distinct aspects of a scene and conveys this information via
characteristic firing patterns (Fig. 5; Koch et al. 2006). For
example, the brisk-transient (Y) cell fires to a broad range
of temporal and spatial frequencies with brief, sharply
timed bursts whereas the brisk-sustained (X) cell fires
similarly but is tuned to higher spatial and lower temporal
frequencies. ‘Sluggish’ cells tend to fire at lower rates
with less temporal precision and to be more selective for
particular features, such as a local edge or direction of
motion.
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These characteristic response patterns are conserved
across a broad range of naturalistic stimuli. This is visually
apparent in Fig. 5 and has been confirmed statistically
(Koch et al. 2006). Despite the clear differences in firing
patterns across cell types, the mean rates evoked by
naturalistic stimuli are remarkably similar. Although the
peak firing rates to ‘tuned’ stimuli can vary 100-fold
between the brisk and sluggish classes, the mean rates
to naturalistic movies vary by only about 2-fold: ∼6 Hz
(local-edge) vs ∼13 Hz (brisk-transient). Thus, although
different types can achieve vastly different levels of activity,
under natural conditions they are tuned to fire at similar
mean rates (∼10 Hz).

How much information does each cell type encode
in response to naturalistic stimuli? Cells with higher
spike rates have greater intrinsic information capacity
simply because they fire more; but some cells might
make better use of their capacity, i.e. might show greater
coding efficiency. Coding capacity is the maximum total
information rate possible, given the mean spike rate (Rieke
et al. 1999; Koch et al. 2004). It is achieved when spikes
are independent (no temporal correlations) and when the
spike train is perfectly reproducible (no noise entropy).
Coding capacity, C, is calculated as:

C(R, �t) =
−R�t log2 (R�t) − (1 − R�t) log2 (1 − R�t)

�t
bits s−1

(5)

where R is mean spike rate and �t = 5 ms, i.e. the time bin
used to calculate information. Coding efficiency is a cell’s
actual information rate divided by its coding capacity.

Coding capacity differs across types – with means
ranging from ∼20 bits s−1 for direction-selective and
local-edge cells to ∼40 bits s−1 for brisk cells – simply
because of the differences in mean firing rates (Koch
et al. 2006) However, coding efficiency is identical
across types and across stimuli: ∼26% of capacity
(Fig. 6A). Consequently, the average information per
spike (information rate/mean spike rate) was highest for
the lowest spike rate: ∼3.5 bits spike−1 vs ∼1 bit spike−1

for the highest rate (Fig. 6B). This accords with the
principle of information theory that rarer events carry
more information per event (Shannon & Weaver,
1949; Zador, 1998). Accordingly, cells with lower
mean spike rates (typically ON direction-selective,
ON–OFF direction-selective, and local-edge) sent ∼20%
more bits spike−1 than the brisk types.

From these measurements we constructed an
‘information budget’ for the guinea pig optic nerve. The
measured information rate for each type times the number
of cells of that type suggest that the nerve’s ∼100 000 axons
send ∼875 000 bits s−1. Extrapolating to the human retina
with ∼106 ganglion cells gives an estimated information
rate comparable to an Ethernet cable (Koch et al. 2006).

This information distributes asymmetrically across the
different ganglion cells channels (Fig. 7). The sluggish
types contribute 64% of the information, far outscoring
the brisk types. Indeed, since most studies of ganglion cell
coding have focused on the brisk types (X and Y in cat; M
and P in primate), it is startling to realize that the famous
Y cells contribute only 9% of the information sent down
the optic nerve; whereas the more mysterious local-edge
cells contribute nearly twice as much!

Figure 6. All cell types transmit information with similar
efficiency
Information rate (total entropy – noise entropy) was estimated by the
direct method (Koch et al. 2006). A, continuous line shows the coding
capacity (C(R)) of a ganglion cell at a given firing rate. This is the
information rate assuming a Poisson process with each interval
independent). Coloured dots show information rates for each recorded
cell, and for all types of stimuli. Dashed line shows the best fit to
information rate as a fraction of coding capacity: I(R) = 0.26 C(R).
Information rate for all cell types and stimuli was thus ∼26% of coding
capacity. B, dashed line indicates the information per spike 0.26 ∗
C(R)/R. Lower rates carry more bits per spike. B-T, brisk-transient; B-S,
brisk-sustained.; LE, local-edge. (Adapted from Koch et al. 2006.)
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Table 1. Transmitting information at low mean rates saves
spikes

Comparison of three kinds of neural cables

Type Local edge Brisk-transient Super

Mean spike rate for cell 4 Hz 8 Hz 40 Hz
Bits spike−1 2.1 1.8 1.1
Spikes s−1 for 300 bits s−1 ∼140 ∼170 ∼270

traffic over cable

Cables where each fibre transmits information at 4 Hz (the
lowest rate for ganglion cells) and at 8 Hz (median rate for
ganglion cells) require similar numbers of spikes to transmit
300 bits s−1. A hypothetical cable with 40 Hz fibres requires
substantially more spikes for the same information rate (adapted
from Koch et al. 2006).

Why does the retina need so many cell types?. Given
this coding strategy, i.e. roughly similar information rates
and equal coding efficiency across cell types, why does
the retina not send all its information at a high rate over
one cell type? Probably because the energetic cost of
signalling by an axon increases non-linearly with temporal
frequency and information rate (Levy & Baxter, 1996;
Laughlin et al. 1998; Balasubramanian et al. 2001). To
illustrate, compare the cost of transmitting 300 bits s−1

over a bundle of independent axons with mean spike rates
of 4 Hz (local-edge), 8 Hz (brisk-transient) and 40 Hz
(hypothetical high-rate channel) (Table 1). Given 26%
efficiency, the 4 Hz neuron sends 2.1 bits spike−1, the 8 Hz
neuron sends 1.8 bits spike−1 and the 40 Hz neuron sends
only 1.1 bits spike−1 (from Fig. 6A). Thus, for 300 bits s−1

the ‘local-edge’ cable would use ∼140 spikes s−1, the
‘brisk-transient’ cable ∼170 spikes s−1 and the high-rate
cable ∼270 spikes s−1. Since the dominant metabolic cost

Figure 7. How information traffic is parcelled among cell types
Most information is sent over the optic nerve, not by the most familiar
‘brisk’ cells (X and Y) but rather by a diverse population of ‘sluggish’
cells.

in neural signalling is associated with spiking (Attwell
& Laughlin, 2001; Lennie, 2003), the cables with lower
firing rates would save considerable energy. Likewise,
theoretical studies predict that metabolic cost is minimized
when signals are distributed over many weakly active cells
(Sarpeshkar, 1998).

Of course, there are other reasons to use multiple cell
types (Sterling, 2004). Spatial acuity requires narrow-field
cells with a high sampling density (Wässle & Boycott,
1991). The high density demands that each cell’s
information rate should be low to reduce costs. On the
other hand, encoding high stimulus velocity requires
extended spatial summation and thus a broad-field cell
– plus the ability to transmit at high bit rates so as not
to lose the higher temporal frequencies. Such a type must
necessarily be expensive, but given the extended dendritic
field, this type can be sparse. Consequently, energetic
considerations probably interact with other constraints
to set the number of types and a general information rate
of roughly 10 bits s−1 and ∼2 bits spike−1.

Functional architecture of the optic nerve

The retina’s information budget shows a marked
asymmetry: most information is conveyed by a diverse
population of small, low-rate cells (Fig. 7). We wondered
if this asymmetry might have a structural correlate
in the optic nerve. Electron micrographs of the nerve
show axon profiles ranging from about 0.2–3.5 μm in
diameter (Fig. 8A and B). The distribution rises steeply,
peaking at ∼0.7 μm and is strongly skewed, with 95% of
the axon diameters lying between 0.5–1.5 μm (Fig. 8C).
The distribution is fitted quantitatively by a well-known
skewed distribution – the lognormal function.

To relate these measurements to the nerve’s information
traffic, we note that the smallest cell with the finest axon is
the local-edge type whereas the largest cell with the thickest
axon is the brisk-transient type. Local-edge cells respond
to naturalistic movies with mean firing rates of about
∼4 spikes s−1; whereas brisk-transient cells respond to the
same movies with ∼8 spikes s−1, i.e. a 2-fold higher mean
rate (Koch et al. 2006). Like the axon diameter distribution
(Fig. 8C), the distribution of mean firing rates from more
than 200 neurons responding to naturalistic movies is
well fitted by a lognormal function. If firing rates for the
thinnest and thickest axons reflect a general relationship,
then the distribution of firing rates should match the
distribution of axon diameters. Indeed, upon applying
a simple linear relationship between rate and diameter
(rate ≈ 10 × (diameter – 0.46 μm)), the distribution of
firing rates closely matches the distribution of axon
diameters (Fig. 8D). Thus, to a good approximation, firing
rate and axon diameter are linearly related.

C© 2009 The Authors. Journal compilation C© 2009 The Physiological Society



J Physiol 587.12 Receptive fields and functional architecture in the retina 2763

Why are axons mostly thin, and why are firing rates
mostly low?. The skew towards thin fibres and low
rates might occur because large fibres and high rates are
disproportionately expensive in (i) space and (ii) energy.
Figure 8D already establishes that firing rate is linear
in axon diameter. To understand how energy relates to
diameter J. Perge, K. Koch, R. Miller, P. Sterling & V.

Figure 8. Retinal ganglion cell axons are mostly thin
A, myelinated axons in the optic nerve range in diameter by ∼10-fold and are separated from each other
by astrocyte processes (electron micrograph). Boxed region is enlarged in B. B, higher magnification shows
mitochondria (mit) in axons and astrocyte processes (a). C, distribution of diameters is skewed with thin axons pre-
dominating. Shaded area includes 95% of the total and corresponds to the range (0.5–1.5 μm) where probability
values were >10% of the peak. Continuous line is a lognormal fit. D, distribution of firing rates compared to
distribution of axon diameters by assuming a linear relation between rate and diameter. The match seems close,
especially considering that the sample sizes differ by two orders of magnitude (adapted from J. Perge, K. Koch,
R. Miller, P. Sterling & V. Balasubramanian, 2009).

Balasubramanian (2009) measured how energy capacity,
estimated as mitochondrial volume, is apportioned in
the optic nerve (Fig. 8B). Mitochondrial concentration
rises steeply for the finest axons, then roughly levels off
at ∼1.6% for diameters greater than ∼0.7 μm (Fig. 9A).
Because axonal volume is proportional to the square
of the diameter, it follows that mitochondrial volume
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(V m) has a quadratic relation to axonal diameter (d):
Vm = 0.0044(d − 0.46)[(d − 0.46) + 4.7].

Now consider that: (i) firing rate is linear in diameter
(Fig. 8D); (ii) energy capacity is supra-linear in diameter
(Fig. 9A); but (iii) information rate is sub-linear in firing
rate (Fig. 6A). Taken together, these facts imply a law of
diminishing returns for neural communication: to double
the information rate requires more than double the space and
more than double the energy capacity. These considerations
are quantified by converting the firing rate associated with
a given diameter into an estimated information rate using
the measurements in Fig. 6. Plotting these information
rates against the energy capacity of axons of the associated

Figure 9. Metabolic cost of information: a law of diminishing
returns
A, mitochondria in myelinated axons thicker than ∼0.7 μm occupy
about 1.5% of the cytoplasm – independently of axon diameter.
Profiles thinner than 0.7 μm have lower mitochondrial concentrations.
Horizontal error bars indicate S.D. for axon diameter; vertical bars
indicate S.E.M. B, information rises more slowly than energy capacity,
giving a law of diminishing returns. Information rate was calculated
from firing rates associated with different axon calibers (Figs 8D
and 6A) (adapted from J. Perge, K. Koch, R. Miller, P. Sterling &
V. Balasubramanian, 2009).

diameter shows information increasing sublinearly with
energy capacity (Fig. 9B). Thus, a 2-fold change from
6 bits s−1 to 12 bits s−1 is associated with a 2.6-fold
increase in mitochondrial volume. A similar analysis
shows a sublinear relation between information and axon
diameter.

This law of diminishing returns was predicted by theory
(Levy & Baxter, 1996; Sarpeshkar, 1998; Balasubramanian
et al. 2001; Balasubramanian & Berry, 2002; de Polavieja,
2002; Niven et al. 2007), and is here confirmed in the
data. This law has a dramatic consequence: given a
total space and energy budget for the optic nerve, more
information can be sent by populating the nerve with many
thin, low-rate fibres, rather than fewer thick, high-rate
fibres. Equivalently, given that behaviour requires a certain
amount of information, fewer resources will be expended
on sending this information over many thin, lower-rate
fibres. We propose that this explains why the retinal
architecture splits visual information across so many
low-rate parallel channels (J. Perge, K. Koch, R. Miller,
P. Sterling & V. Balasubramanian, 2009).

This idea raises the question: why does the fibre
distribution peak at 0.7 μm and not at some much
smaller value? Very thin axons (<0.5 μm) are rare
probably because below this diameter spontaneous
channel fluctuations cause variations in spike timing
sufficient to degrade the message (Faisal & Laughlin,
2007). Conversely, given the advantages of thin axons with
low firing rates, why are large axons used at all?

The standard idea is that thick axons are required
to achieve higher conduction velocity and thus shorter
conduction times. This seems true where conduction
distances are long and rapid responses are essential
(Biedenbach et al. 1986; Mazzatenta et al. 2001; Wang
et al. 2008) but the conduction times between retina
and lateral geniculate nucleus typically differ between the
thinnest and thickest axons by less than the temporal
response ‘jitter’ across repetitions of the same stimulus
(Meister & Berry, 1999; Koch et al. 2006; J. Perge, K.
Koch, R. Miller, P. Sterling & V. Balasubramanian, 2009).
It seems implausible that significantly more space and
energy would be spent for such a minor reduction in
conduction time. Thus, we suggest an alternate hypothesis.
A thicker axon with a higher information rate would
require more vesicle release at the terminal arbor to trans-
fer the information across the synapse. This would require
more active zones and more boutons, and indeed this is
found for X and Y terminal arbors (e.g. Roe et al. 1989).
Therefore, axon caliber should increase with mean spike
rate, not for any intrinsic electrophysiological advantage,
but to support the larger terminal arbor and the extra
active zones needed to transfer higher information rates
across the synapse (J. Perge, K. Koch, R. Miller, P. Sterling
& V. Balasubramanian, 2009).
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Discussion

All investigations of ‘functional architecture’ start with
description. First structure: what are the parts, and
how are they arranged? Then function: how does it
behave? Then mechanism: how does it work? Finally one
reaches the deeper question: why is it designed just so?
This last question tries to identify the specific selective
pressures that, over time, have evoked the particular
architecture/mechanism.

Rarely one may be extremely lucky and find that the
initial description suffices to answer, or at least suggest,
the ‘why’ of design. Thus it was for Watson and Crick:
their first model of DNA structure suggested their famous
conclusion: ‘It has not escaped our notice that the specific
pairing we have postulated immediately suggests a possible
copying mechanism for the genetic material.’ Adding
the structural knowledge that four bases must encode
21 amino acids led fairly swiftly (1953 to 1961) to the
hypothesis and demonstration of the triplet code.

For the nervous system, matters have gone more
slowly: a century has passed since Cajal illustrated
multiple parallel pathways through the retina; more than
50 years since Barlow (1953) and Kuffler (1953) described
ON and OFF ganglion cells, more than 30 years since
Wassle and colleagues described large coverage factors for
ganglion cell types and since the discovery of brisk and
sluggish types, along with the skewed distribution of axon
calibers. Each of these key descriptive findings begged for
explanation at the level of ‘why’ – but, unlike the double
helix, not one of them suggested a hypothesis. Of course
the ‘whys’ of DNA were simplified by the narrowness of
the problems: how to copy? what’s the code? Moreover,
they were all on the same scale – whereas the explanations
here are required to span a huge range of scales.

A principle underlying the retina’s functional
architecture

In quantifying architecture and function across a range
of scales – from the structure of cellular arrays (milli-
metres) down to the fine structure of axons (∼0.1 μm)
– we find that many design features seem governed by
a single principle: represent the most information for the
least cost in space and energy. This emphatically does
not mean ‘maximize information’ – for the retina might
have evolved to capture more photons or to represent
signals with more synapses, and if it did, we would see
better (Borghuis et al. 2009). But more information would
require more resources – which would be superfluous and
thus uneconomical – because we need not see infinitely
well, just well enough to detect our prey and our predators
before they detect us.

This principle constitutes the basic answer to our ‘why’
questions. Why are OFF ganglion cells more numerous
than ON cells, and why are they more densely branched?

Because natural scenes contain more negative than positive
contrasts, and the retina matches its neural resources
to represent them equally well (Figs 1 and 2). Why do
ganglion cells of a given type overlap their dendrites to
cover the territory by 3-fold? Because this maximizes
total information represented by the array – balancing
SNR improvement against increased redundancy – sub-
ject to fixed commitment of number of cells (Figs 3 and
4). Why do ganglion cells form multiple arrays? Because
then information can be sent at lower rates, reserving
certain channels for higher rates, thereby reducing space
and energy costs supralinearly (Figs 5–9).

There are qualitative hints that this principle also
operates in striate cortex. For example, the number of
cell types expands greatly, and (possibly correspondingly)
the mean firing rates are even lower than in retina (Lennie,
2003). Moreover, information is packaged efficiently. For
example, the simple cell receptive field is nearly perfectly
described as a Gabor filter – which efficiently balances
representation of both space and spatial frequency (Jones
& Palmer, 1987); and the ‘efficient coding hypothesis’
applied to the statistics of natural images predicts
oriented receptive fields resembling those in striate
cortex (Olshausen & Field, 1996). This takes to the
cortical level the principles underlying the ganglion
cell’s difference-of-Gaussians filter, for which the centre
improves SNR (Tsukamoto et al. 1990) and the surround
reduces redundancy (Atick & Redlich, 1992; van Hateren,
1992, 1993; Tokutake & Freed, 2008). Moreover, it is
prima facie obvious that the modular arrangements of
orientation and ocular dominance columns must use
space efficiently (Hubel & Wiesel, 1962), and there are
calculations to support this (Chklovskii & Koulakov,
2004).

However, there are numerous questions across scale,
for which the ‘why’ questions have yet to be asked. For
example, why is the full cycle of 360 deg divided into a
certain number of orientations and not more or fewer?
And why do they display their particular degree of pre-
cision and not more or less? Why do thalamic inputs
distribute to multiple layers and to multiple cell types?
Such fundamental questions about cortical design await
better understanding of the neural circuitry down to the
submicron scale. Probably they will relate, as in retina, to
matters of space and energy efficiency, and to evaluate
them will require more statistics and computational
theory. But the payoff might be a better understanding of
why our brain computes so vastly better than our laptop
while occupying about the same volume and drawing only
12 watts.
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