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Abstract

According to the ‘redundancy reduction’ hypothesis, a visual neuron removes correlations from an image to reduce redundancy in the
spike train, thus increasing the efficiency of information coding. However, all elaborations of this general hypothesis have treated
spatial and temporal correlations separately. To investigate how a retinal ganglion cell responds to combined spatial and temporal
correlations, we selected those cells with center–surround receptive field and presented a stimulus with strong spatiotemporal
correlations: we presented a random sequence of intensities (of white noise) to the receptive field center and then activated the
surround with the same sequence. We found that, for most cells, activating the surround reduced temporal redundancy in the spike
train. Although the surround often reduced the information rate of the spike train it always increased the amount of information per
spike. However, when the surround was modulated by a different white-noise sequence than the center, eliminating spatial–temporal
correlations, the surround no longer reduced redundancy or increased information per spike. The proposed mechanism for
redundancy reduction is based on the temporal properties of the center and surround: the surround signal is delayed behind the
center signal and subtracted from it; this implements a differentiator which removes low frequencies from the stimulus, thus reducing
redundancy in the spike train. These results extend the redundancy reduction hypothesis by indicating that the spatial organization of
the receptive field into center and surround can reduce temporal redundancy within the spike train of a ganglion cell.

Introduction

Natural images are inherently redundant due to the presence of objects
that introduce spatiotemporal correlations. Information about these
images is processed by the retina, coded as spikes by retinal ganglion
cells and transmitted along the optic nerve. To faithfully reproduce
correlations at the retina’s output would be a waste of the coding
capacity of the optic nerve because many spikes would provide the
same information. Thus it has been proposed that the visual system
reduces redundancy in order to compress information into fewer
spikes (Barlow, 1961). Redundancy reduction is a technique by which
statistical dependencies between symbols are reduced: for example, to
compress files onto a computer hard drive, a long string of 0’s is
recoded as a shorter sequence of binary digits, thus gaining more
information per digit. Analogously, it has been proposed that neural
filters deemphasize low temporal frequencies (whitening), which
eliminates stretches of the spike train in which the spike rate changes
little (Srinivasan et al., 1982; van Hateren, 1992; Dan et al., 1996).
To date, theoretical elaborations of this basic redundancy reduction

hypothesis have treated space and time separately, mostly as a means
of simplifying the necessary mathematical derivations. It is proposed
that the spatial organization of a visual neuron’s receptive field into
center and surround is to reduce spatial redundancy, meaning
redundancy between the spike trains of multiple visual neurons
(Atick, 1992). It is also proposed that the temporal properties of a
visual neuron’s response reduces temporal redundancy between spikes

in the spike train of a single visual neuron (Srinivasan et al., 1982; van
Hateren, 1992; Dan et al., 1996). However, in practice the spatial and
temporal aspects of a visual neuron’s response cannot be separated so
cleanly: in the case of the retinal ganglion cell, the receptive field
surround is delayed behind the center, suggesting that spatial
organization of the receptive field would contribute to temporal
filtering (Frishman et al., 1987). Here we demonstrate a consequence
of this space–time inseparability: we find that the spatial organization
of the ganglion cell’s receptive field into center and surround reduces
temporal redundancy in the spike train.
We wondered whether redundancy-reducing strategies are consis-

tent across visual neurons and so we investigated the mammalian
retina, in which different ganglion cell classes have different
information-coding strategies. One ganglion cell class is termed
‘brisk’ because it fires at short latencies and high rates; another class is
termed ‘sluggish’ because it fires at long latencies and at low rates
(Cleland & Levick, 1974a, b). Brisk cells are known to transmit
information at higher rates but with lower efficiency than sluggish
cells (Koch et al., 2004, 2006). Brisk cells comprise at least four types,
brisk–sustained and brisk–transient of On and Off varieties, and
invariably have concentric receptive field centers and surround.
Sluggish cells comprise multiple types, some with complex receptive
fields that respond to specific stimulus features, others with simpler
center–surround receptive fields (Cleland & Levick, 1974b; Stone &
Fukuda, 1974; Rowe & Cox, 1993).
To quantify redundancy and coding efficiency we used a standard

information theoretical method that distills the number of distinct
spike patterns and their frequency of occurrence into a single
convenient unit of measurement: bits ⁄ s (de Ruyter van Steveninck
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et al., 1997). To obtain spike trains, we viewed the intact guinea pig
retina in vitro with infrared–differential interference contrast optics
and visually targeted individual ganglion cells for loose-patch
extracellular recording. By using spots of light modulated by white
noise to activate the center and then adding an annulus modulated by
white noise to activate the surround, we tested the effect of the
surround on information transmission. We found that activating the
surround of brisk–transient and sluggish cells, but not brisk–sustained
cells, reduced temporal redundancy. Thus we found that the spatial
organization of the receptive field into center and surround, heretofore
implicated in the reduction in spatial redundancy between the spike
trains of different ganglion cells, is capable of increasing information
per spike and reducing the temporal redundancy of a single spike train.

Materials and methods

Recording

Fourty-three adult Hartley guinea pigs (400–600 g, >8 weeks) were
used in this study. Each was anesthetized with ketamine (133 mg ⁄ kg),
xylazine (13 mg ⁄ kg) and pentobarbital (100 mg ⁄ kg), and an eye was
removed. The animal was then killed by anesthetic overdose. All
procedures were performed in accordance with University of Penn-
sylvania and National Institutes of Health guidelines. Pieces of retina,
attached to pigment epithelium, choroid and sclera, were mounted,
ganglion cells up, in a chamber on an upright microscope. The tissue
was superfused with Ames’ medium (Sigma; http://www.sigma.com)
that was saturated with 5% CO2 and 95% O2, adjusted with glucose to
�300 mOsm, and which contained (in mm): NaCl, 120; KCl, 3.1;
KH2PO4, 0.5; Na2HCO3, 23; MgSO4, 1.2; CaCl2, 1.15; plus amino
acids and vitamins (pH 7.4, 34�C).

Under visual control (infrared differential contrast optics, 60· lens,
0.9 NA), a glass pipette (12 MW) filled with interference Ames’

solution was used to peel off the inner limiting membrane from several
ganglion somas. The tip of another identical pipette was applied to a
ganglion cell soma; when suction was introduced the tip formed a
loose (<1 GW) seal with the ganglion cell body. Then a patch amplifier
in current-clamp mode was used for extracellular recording of spike
trains. The receptive field center was identified by flashing a spot of
light onto the retina, and noting the diameter and position that evoked
the greatest change in spike rate. The surround diameter was found by
enlarging the spot, observing a decline in response amplitude due to
center–surround antagonism, and noting the diameter where response
no longer declined (Fig. 1).

Visual stimulus

A visual stimulus was displayed on a 1-inch-wide computer monitor
with a green phosphor (Lucivid MR1-103; Microbrightfield, Colches-
ter, VT, USA; Demb et al., 1999). The monitor face was set in the
microscope’s camera port and was projected onto the photoreceptor
layer through a 4 · 0.1 NA lens to a final size of 3 · 4 mm
(600 · 800 pixels, 72 Hz refresh rate). Stimuli were programmed in
Matlab (Mathworks, Natic, MA, USA) using procedures provided by
the Psychophysics Toolbox (Brainard, 1997). The monitor had a
measured gamma value of 1.7; using this gamma value produced a
highly linear relationship between gun voltage and intensity
(R2 = 0.995). All stimuli had 256 different intensity levels with the
mean level (128) equivalent to 27 nW ⁄ mm2 on the retina, which
provided 7 · 104 photons ⁄ lm2 ⁄ s at 540 nm. Due to overlap of
stimulus and photoreceptor spectra, this stimulus caused 2 · 104

isomerizations per second in an M cone, which is photopic illumi-
nation (for calculation method see Yin et al., 2006). Stimuli had a line
spread function over the retina that was described by a Gaussian with a
SD of 19 lm (Demb et al., 1999).

Fig. 1. Methods: determining center size and cell type of retinal ganglion cells. (A) Responses to flashing spots of increasing diameter (50% contrast, 50% duty
cycle). Solid line is the equation for the convolution between a spot, representing the stimulus, and the difference between two Gaussians representing the
center and surround: z = kc exp(r

2 r2c) ks exp (r
2 r2s), where r is the distance from the middle of the receptive field. The center region was 300 lm in diameter (arrow).

(B) Autocorrelograms of spike times from three cells from different classes: brisk–transient (bt), brisk–sustained (bs) and sluggish (s). (C and D) K-means cluster
analysis of 45 cells based on three measures of the autocorrelogram indicated three cell types (see inset in panel D).
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Estimating information rate

The information rate of a spike train was estimated by the direct
method (de Ruyter van Steveninck et al., 1997). We presented a white-
noise stimulus and then repeated this same temporal sequence of
intensities. The resulting spike train was divided into 5-ms time bins,
and the number of spikes in each bin was counted. Words were
constructed from counts in multiple bins, the frequency of occurrence
for each word (P(W )) was found, and word entropy was estimated as

H ¼ �
X

w

P ðW Þ log2 P ðW Þ bits ð1Þ

Entropy rates were calculated as word entropy multiplied by the
word rate. Bin entropy (Hbin) was calculated from words of 1 bin in a
stimulus repeat. Total entropy rate (Htotal) was estimated from words
of multiple bins in a stimulus repeat, averaged across repeats. Noise
entropy rate (Hnoise) was estimated from words of multiple bins at the
same time across stimulus repeats.
Htotal and Hnoise were extrapolated to infinite word size and data size

according to the method of Strong et al. (1998). The spike train was
divided into segments: the segments were either intervals of time for
Htotal or a group of stimulus repeats for Hnoise. We varied the number
of segments (s) and plotted the resulting entropy rate against the
inverse of the number of segments. This graph was then fitted with a
second-order polynomial (H0 + H1 ⁄ s + H2 ⁄ s2), and H0 was taken as
the extrapolated entropy. Extrapolated entropy rate was plotted against
inverse word length (1–6 bins) and extrapolated to zero inverse word
length, i.e. infinite word length.
Information rate was calculated as the difference between total

entropy and noise entropy:

Hinfo ¼ Htotal � Hnoise ð2Þ
A 5-ms time bin was chosen because it was close to the average

temporal precision of the spike train for both brisk and transient cells
(jitter = 5 ms), and between the minimum and maximum precision
(4–6 ms; Koch et al., 2004). When we tried smaller bins (1–5 ms),
increasing the number of bins to retain word length, the proportion of
coding capacity filled by information rate, redundancy, and noise
entropy rate did not change (CV = SD ⁄ mean < 0.07; N = 16 cells).
Thus bin size had no effect on the conclusions reached in this study.

Refractory model of spike train

For a nonhomogeneous Poisson process, the probability of an
interspike interval i after a spike at time t0 is

exp �
Zt0þi

t0

�rðtÞdt

0
@

1
A ð3Þ

where �r tð Þ denotes the instantaneous rate averaged over stimulus
repetitions. Consequently, the interval is a random deviate with an
exponential distribution. Thus to obtain an exponential deviate we
applied the inverse function, which is the natural logarithm, to a
random deviate x uniformly distributed between 0 and 1 (Press et al.,
1989; Berry et al., 1997):

� lnðxÞ ¼
Zt0þi

t0

�rðtÞdt ð4Þ

Introducing a refractory period to this equation required that the
instantaneous rate be adjusted upwards so that the overall rate matched

the observed rate despite the period of time when firing was
impossible. To accomplish this, we defined Wj(t) as the firing
probability in a single trial, which is zero for a refractory period
after each spike, and otherwise one. We then estimated the probability
that firing is possible as

W ðtÞ ¼ hWjðtÞij ð5Þ

where <…>j denotes averaging across stimulus repetitions j. We then
adjusted the observed firing rate upwards using this equation:

qðtÞ ¼ �rðtÞ
W ðtÞ ð6Þ

Then, to generate spikes, we use a modification of Eqn 3 to choose
each new interval:

� lnðxÞ ¼
Zt0þi

t0

qðtÞwðt � t1Þdt ð7Þ

where w(t) represents the recovery of firing probability after each
spike and is equal to zero from time zero to the duration of the
refractory period, but otherwise equal to one. Thus in practice, after
each spike, a new x was chosen at random, the left side of Eqn 5 was
integrated numerically in 5-ms time steps until it equaled )ln(x), and
at this time a new spike was produced.

Classification of cells

Cells were classified by constructing spike train autocorrelograms
(spot stimulation, temporal white noise) (Devries & Baylor, 1997;
Freed et al., 2003) (Fig. 1B). From each autocorrelogram we measured
three features: to quantify the relative refractory period we measured
the time to peak, to quantify the burst duration we measured the peak
width and to quantify spike frequency during the burst we measured
the peak height. We submitted these measures to k-means cluster
analysis and found three clusters (Fig. 1C and D). We then matched
these clusters with descriptions of spike train autocorrelograms of cells
of known morphology and ⁄ or receptive field structure (Devries &
Baylor, 1997; Freed et al., 2003; Koch et al., 2004, 2006). Thus we
classified cells with peak width of < 4 ms as brisk; the remaining cells
we classified as sluggish. To divide the brisk cells, we classified cells
with peak frequency >100 spikes ⁄ s as brisk–transient and the rest of
the brisk cells as brisk–sustained.

Results

Stimulating the center and surround using temporal
white noise

We recorded spikes from ganglion cells in an intact in vivo
preparation of the mammalian (guinea pig) retina and selected those
with a concentric and antagonistic receptive field center and
surround (see Materials and methods; Fig. 1A). To classify cells,
we applied established criteria to the statistics of the spike train and
so divided them into brisk–transient, brisk–sustained and sluggish
classes. We stimulated the receptive field center with a spot
matched to its size and activated the surround with an annulus
whose inner diameter matched the spot diameter and whose outer
dimension was beyond the receptive field. The intensities of spot
and annulus were modulated by the same white-noise sequence: a
new intensity was selected randomly every 56 ms from a Gaussian
distribution whose SD was equal to one-third of the mean. We
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chose this update rate and contrast because it evoked robust
responses from all cell classes and was the highest contrast we
could provide without truncating the Gaussian distribution. The

stimulus lasted 10–25 s and was repeated 100 times, and it evoked
bursts of spikes interposed with quiescent periods devoid of spikes
(Fig. 2; also, Berry & Meister, 1998).

Fig. 2. Responses to temporal white-noise stimulation of center and surround. Spike trains from an On brisk–transient cell evoked by three stimuli: a spot matched
to the receptive field center (c), a concentric annulus matched to the surround (s) and a spot and annulus presented together (c + s). Spot and annulus intensities were
modulated by the same temporal white-noise sequence (bottom trace). Sequence was 25 s long: only 1 s is shown. To the right are the impulse responses and to the
bottom right are the impulse responses averaged from multiple cells and normalized to their peak amplitude (11 brisk–transient cells both On and Off; gray bands
show average ± SEM; the impulse responses of Off cells are inverted). Note that the surround response attains a minimum after the center response attains a
maximum, and thus the surround is delayed behind the center.

Fig. 3. Comparison of three stimulus configurations. Summarized for brisk–transient and sluggish cell classes combined (see Table 1 for data divided by cell class).
(A) Activating the surround with the same white-noise sequence as the center reduced redundancy and increased noise (the measures R and N; see text). Error bars
show SEM. Asterisks (*) show significant differences (Student’s t for paired data, a = 0.02) (B and C) Reducing center contrast (B) or activating the surround with a
different white-noise sequence (C) had no significant effect on redundancy or noise.
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It might be assumed that, when the center and surround are stimulated
by the same sequence of intensities, the surround signalwould cancel the
center signal, resulting in a weak response. However, it has been shown
that a ganglion cell responds robustly because the surround signal is
delayed behind the center signal and thus cancellation is incomplete
(Frishman et al., 1987). To see whether this were true of our recorded
cells, we constructed impulse responses by dividing the spike train into
5-ms time bins, constructing a rate histogram, then calculating the cross-
correlation function between stimulus and rate histogram.We were able
to obtain clear center and surround impulse responses of opposite
polarity from brisk–transient and brisk–sustained cells but not from
sluggish cells. The average time to peak of the impulse response was
77 ± 2 ms for the center and 125 ± 5 ms for the surround. Thus the
surround was delayed �50 ms behind the center (Fig. 2).

Surround reduced temporal redundancy

Our general method for analyzing information coding by the spike
train was to consider that the capacity of the spike train to code
information is set by the spike rate, and that some of this capacity is
lost on noise and redundancy, leaving what remains to code
information (MacKay and McCulloch 1952; Reinagel et al. 1999;
Rieke et al. 1997). Then we determined whether the surround

ameliorated losses of capacity due to redundancy or noise. Expressed
more formally, information rate Hinfo would be maximal and equal to
the coding capacity of the neuron if there were no noise and if time
bins were statistically independent (i.e. there were no redundancy).
However, the coding capacity of a neuron is invariably reduced by the
noise entropy and redundancy to yield the information rate:

Hinfo ¼ C � Hnoise � ðC � HtotalÞðbits/sÞ ð8Þ

Thus in order for the surround to increase information per spike, it
must reduce the proportion of capacity lost to either noise entropy or
redundancy.
To quantify coding capacity we used bin entropy (C = Hbin), which

is the entropy of the spike train assuming that all bins are statistically
independent. Because the coding capacity of the spike train depends
on spike rate, which is different for each cell, we normalized
redundancy to coding capacity:

R ¼ ðHbin � HtotalÞ=Hbin ð9Þ

We found that the surround reduced the redundancy of brisk–
transient and sluggish cells by 24 and 60%, respectively, but actually
increased the redundancy of brisk–sustained cells by 15% (Fig. 3A;
Table 1).

Table 1. Effect of stimulating center and surround regions of the receptive field (c, s) on information coding by three classes of ganglion cell: brisk–transient,
brisk–sustained and sluggish

Spike rate (Hz) Information rate (bit ⁄ s) Information (bits ⁄ spike) Redundancy (R) Noise (N ) Cells (n)

Same sequence
Brisk–transient
c 19.6 ± 1.4 27.5 ± 2.0 1.4 ± 0.1 0.33 ± 0.02 0.38 ± 0.02 23
c + s 17.2 ± 1.8 27.5 ± 2.6 1.6 ± 0.1 0.25 ± 0.02 0.43 ± 0.02
Difference (%) )12 0 17 )24 13

Brisk–sustained
c 14.6 ± 3.4 25.8 ± 4.9 1.8 ± 0.0 0.15 ± 0.03 0.50 ± 0.03 5
c) 10.8 ± 2.7 20.2 ± 4.7 2.4 ± 0.2 0.17 ± 0.04 0.48 ± 0.03
Difference (%) )26 )22 30 15 )4

Sluggish
c 14.9 ± 1.8 27.2 ± 2.5 1.8 ± 0.0 0.11 ± 0.01 0.53 ± 0.02 5
c + s 6.6 ± 0.6 15.7 ± 1.6 2.4 ± 0.2 0.05 ± 0.01 0.58 ± 0.04
Difference (%) )56 )42 30 )60 9

Reduced contrast
Brisk–transient
c 22.8 ± 2.8 30.9 ± 3.3 1.4 ± 0.1 0.24 ± 0.08 0.24 ± 0.08 5
c) 15.3 ± 1.6 24.3 ± 2.6 1.6 ± 0.1 0.22 ± 0.07 0.22 ± 0.07
Difference (%) )33 )21 15 )9 )9

Sluggish
c 10.5 ± 2.6 17.9 ± 3.2 1.8 ± 0.2 0.16 ± 0.06 0.55 ± 0.05 5
c) 4.4 ± 1.1 9.7 ± 1.8 2.3 ± 0.2 0.32 ± 0.10 0.44 ± 0.07
Difference (%) )58 )46 28 96 )19

Different sequence
Brisk–transient
c 21.5 ± 2.6 30.5 ± 2.8 1.5 ± 0.1 0.36 ± 0.03 0.33 ± 0.03 10
c + s 23.3 ± 2.2 32.1 ± 2.6 1.4 ± 0.1 0.33 ± 0.04 0.36 ± 0.03
Difference (%) 8 5 )3 )7 8

Sluggish
c 11.4 ± 1.4 23.2 ± 2.0 2.1 ± 0.1 0.28 ± 0.02 0.42 ± 0.03 7
c + s 14.8 ± 2.4 28.0 ± 3.5 2.0 ± 0.1 0.27 ± 0.02 0.42 ± 0.02
Difference (%) 30 21 )7 )4 )1

The stimulus configurations were: same sequence, stimulating center (c) and surround (s) with the same temporal white-noise sequence; reduced contrast, reducing
the center contrast (c)); and different sequence, stimulating center and surround with different sequences. Mean values are ± SEM. Measures of spike train
redundancy and noisiness (R and N, respectively) are explained in the text.
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Surround increased information per spike

The proposed purpose of redundancy reduction is to increase the
efficiency of information coding and transmission down the optic
nerve (see Introduction). Thus we quantified transmission efficiency
by dividing information rate by spike rate to give information per
spike. The surround increased this measure in all cell types, but this
increase was greater for brisk–sustained and sluggish cells than for
brisk–transient cells (30% vs. 17%; Fig. 3A, Table 1). This increase in
efficiency occurred despite a reduction in information rate for brisk–
sustained and sluggish cells, but not brisk–transient cells (Table 1).
Thus for many cells there was a net reduction in information but an
increase in the efficiency with which the remaining information was
transmitted.

Coding capacity lost to noise

As implied by Eqn 8, if the surround could reduce the proportion of
coding capacity lost to noise entropy this might leave more capacity
for coding information. To see whether this occurred, we quantified
the proportion of coding capacity lost to noise by normalizing noise
entropy to coding capacity:

N ¼ Hnoise=Hbin ð10Þ

Unexpectedly, by this measure, noise actually increased for brisk–
transient and sluggish cells but decreased slightly for brisk–sustained
cells (Fig. 3B, Table 1). To confirm this result we used another
measure of spike-train noise, the Fano factor:

F ¼ r2ðtÞ
�rðtÞ ð11Þ

where r2ðtÞis the variance of the instantaneous rate and �rðtÞ is the
average over stimulus repetitions. Activating the surround with the
same white-noise sequence as the center increased the Fano factor for
brisk–transient and sluggish cells, confirming that the surround added
noise to the spike train of these cell classes (Fig. 5C).

Fig. 4B shows changes in noise (N) against changes in redundancy
(R), and demonstrates a significant correlation between these two
measures (coefficient of determination, 0.58). Apparently the sur-
round could not reduce redundancy without a proportional increase in
noise. We will discuss the source of the noise increase below but this
figure shows that, for brisk–transient cells, activating the surround
had variable effects on redundancy and noise (Fig. 4A and B). The
amount by which activating the surround changed redundancy or
noise did not correlate with the response polarity, which was On or
Off as judged by the polarity of the impulse response. Neither did
these changes correlate with refractory period or our measures of
autocorrelogram (as shown in Fig. 1). However, the brisk–transient
class, in addition to being divided by response polarity (On ⁄ Off) may
have additional features that divide it (as has been suggested by Wu
et al., 2004). Thus it is possible that this variability in the surround
effect might result from the brisk–transient class containing a variety
of cell types.

Reducing spike rate increased information per spike

Reducing spike rate reduces coding capacity and thus usually
information rate, but also increases information per spike (Koch
et al., 2004, 2006). Analogously, a ‘1’ or a ‘0’ on a hard drive both
code equal amounts of information, but using fewer 1’s might decrease

the absolute amount of information coded but increase the amount of
information coded per 1 written. Thus part of the surround’s ability to
increase information per spike might result from a reduction in spike
rate. To test this idea, we returned to the experiment in which the
surround was activated with the same white-noise sequence as the
center: when we plotted change in information per spike against
change in spike rate, we found a significant correlation (R2 = 0.58;
Fig. 4A), indicating that the surround increases information per spike
at least in part by simply reducing spike rate.
We wondered to what extent a reduction in spike rate alone, without

accompanying changes in redundancy, could increase information per
spike. Thus we reduced spike rate by stimulating the receptive field
center with a spot of the standard contrast (one-third of mean) and then
reducing contrast to either one-sixth or one-ninth of the mean.
Reducing contrast had no effect on the amount of coding capacity
filled by redundancy or noise (R or N), but increased information per
spike (Fig. 3B). This indicated that a spike rate decrease alone can
increase information per spike but cannot ameliorate the loss of coding
capacity to redundancy.

Spatiotemporal correlations were required for redundancy
reduction

So far, by modulating the center and surround with the same white-
noise sequence, we had introduced a perfect spatiotemporal correlation
between center and surround. It has been proposed that visual neurons

Fig. 4. Effects of activating the surround with the same white-noise sequence
as the center. (A) Activating the surround reduced spike rate and increased
information per spike in all cell classes (R2 = 0.58). (B) The surround reduced
redundancy (R) and increased noise (N) for brisk–transient and sluggish cells
but had opposite effects for brisk–sustained cells (R2 = 0.75).
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reduce correlations in natural images in order to reduce redundancy
into the spike train (Srinivasan et al., 1982; Atick, 1992). If the center–
surround organization of the receptive field removes spatiotemporal
correlations in order to remove redundancy, then decorrelating center
and surround should prevent the surround from reducing redundancy.
To test this prediction, we recorded from brisk–transient and sluggish
cells, which had previously shown redundancy reduction, and
presented a spot and then an annulus modulated by different white-
noise sequences. To ensure that the two sequences had the same
distribution of intensities, we cut the 10-s white-noise sequence for the
spot in half and then transposed the two halves to produce the
sequence for the annulus. Activating the surround did not reduce
redundancy, nor did it change information per spike or the loss of
coding capacity to noise (Fig. 3B). Thus spatiotemporal correlations
were necessary for the surround to improve the efficiency of
information coding.

Source of the noise increase

The surround increased the proportion of coding capacity lost to
noise. To investigate this noise increase, we constructed a stochastic
model of the spike train (Berry & Meister, 1998). This model
required no free parameters to fit iteratively, took as its sole input
the instantaneous spike rate averaged across trials �rðtÞ, and used a
Poisson-noise generator modified with a refractory period to set
spike times (see Materials and methods). Returning to the exper-
iment in which the center and surround had the same white-noise
sequence and thus were spatiotemporally correlated, we selected

spike trains from brisk–transient and sluggish cells and used their
absolute refractory period and �rðtÞ as input to the model. The
refractory period was measured for each spike train by constructing
a interspike interval histogram and noting at what interval this
histogram reached zero spikes; �rðtÞwas constructed by counting the
spike rate in 5-ms bins averaged across stimulus repeats. We
analyzed the model’s output exactly as we had analyzed the
recorded spike train. The result was that the model was able to
duplicate the observed increase in information per spike and the
observed decreases in redundancy and noise (R and N, respectively;
Fig. 5). The model was also able to duplicate the observed increase
in Fano factor. That the model was able to duplicate the noise
increase was remarkable because it required no other source of
noise beside the stochastic properties of spike generation. Therefore,
the noise increase was due to an interaction between the firing rate
�rðtÞ and these stochastic properties, and required no additional
source of noise such as would be required to model neural noise in
the retinal circuit due to channel openings or synaptic vesicle
release.
We noted a significant correlation between decreasing spike rate

and increasing noise (Fano factor; Fig. 5C). A reasonable explana-
tion for this correlation is that spike generation has a refractory
interval and thus departs from Poisson statistics (Berry & Meister,
1998). The refractory interval regularizes spike rate and reduces
noise when the spike rate is high enough that the characteristic
interspike interval approaches the refractory interval. If, however, the
spike rate declines and the interspike interval lengthens, then the
refractory period no longer has effect, and the noisiness of the spike

Fig. 5. A refractory model duplicated the main effects of adding a surround with the same white-noise sequence as the center. (A) A refractory model replicated both
spike count and Fano factor in 5-ms bins (brisk–transient cell, spot stimulus). (B) The model duplicated the main effects: a decrease in redundancy (R) and an
increase in noise (N ) in brisk–transient and sluggish cells (compare to Fig. 3A). (C) Changes in Fano factor and spike rate were correlated for both observed and
modeled spike trains (R2 = 0.48 and 0.39 for observed and modeled, respectively). *P < 0.05, comparing c and cts; bar show means ± SEM.
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train increases to that of a Poisson process. To test this idea, we kept
�rðtÞ constant but decreased refractory period so that it no longer
approached the interspike interval, and found that, as expected, noise
(N) increased, indicating that the relative duration of refractory
period and interspike interval determines the proportion of coding
capacity lost to noise (Supplementary material, Fig. S1).

Activating the surround reduced low frequencies

Visual cells are thought to reduce redundancy by deemphasizing
low spatial or temporal frequencies in their responses (Srinivasan
et al., 1982; Atick, 1992; van Hateren, 1992; Dong & Atick, 1995).
Intuitively this idea makes sense because low frequencies convey
information about unchanging and hence redundant aspects of a
visual stimulus. To test this idea, we constructed power spectra of
the spike train by dividing it into 5-ms time bins, constructing a
rate histogram, Fourier transforming this rate histogram and
calculating its magnitude squared. Because the stimulus had the
same temporal frequency distribution throughout the experiment,
any changes in the frequency content of the spike train must be due
to changes in filtering properties. We found that activating the
surround with the same white-noise sequence as the center caused a
marked reduction in power at low frequencies but activating with a
different white-noise sequence did not, supporting the idea that
redundancy reduction is implemented by filtering out low frequen-
cies (Fig. 6).

Discussion

Our results confirm and extend the basic proposal that the retina
increases the efficiency of information transmission by reducing
redundancy (Barlow, 1961). This general hypothesis has been
elaborated into spatial and temporal versions. A spatial elaboration
states that the surround deemphasizes low spatial frequencies, thus
removing spatial correlations in natural images, reducing redun-
dancy between the spike trains of different ganglion cells (Atick,
1992; Dong & Atick, 1995). A temporal elaboration states that the
bandpass character of the response deemphasizes low temporal
frequencies from the spike train of a single ganglion cell. Either
elaboration of the basic hypothesis is supported by experimental
evidence: starting with redundancy reduction as an optimizing
principle, it is possible to derive spatial or temporal filters that
match those measured for ganglion cells and other visual neurons
(Srinivasan et al., 1982; Atick, 1992; van Hateren, 1992; Dong &
Atick, 1995). However, it was not clear whether a visual neuron,
when confronted with combined spatial and temporal correlations,
would in fact reduce redundancy. Here we show that, in the
presence of such spatiotemporal correlations, the surround can
reduce temporal redundancy in a single spike train. An exception to
this general rule is the brisk–sustained cell, for which we were
unable to demonstrate redundancy reduction.
The receptive center and surround act together to remove low

frequencies that contribute to temporal redundancy (Fig. 6). This
has been previously demonstrated for brisk–transient cells by

Fig. 6. Activating the surround with the same white-noise sequence as the center de-emphasized low frequencies in the spike train. (A and B) Brisk–transient cells;
(C) a sluggish cell; (D) averaged spectra for 14 brisk–transient and sluggish cells (grey bands show average ± SEM). The surround reduced power at low
frequencies, but only if the surround was stimulated with the same temporal white-noise sequence as the center.
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Frishman et al. (1987), who derived pure center and surround
‘mechanisms’ that have the same frequency response. The surround
was, however, delayed behind the center. Due to this delay, and
because the center and surround are antagonistic, the center and
surround would act as a differentiator, performing a ‘running
subtraction’ of the visual stimulus, and by this method filter out
low frequencies. We confirm that surround’s impulse response is
delayed behind the center, although by means of spot and annulus
we cannot obtain pure center and surround mechanisms, and thus
cannot confirm that these mechanisms have similar frequency
responses. Thus it is possible that the surround, if it responds to
lower frequencies than the center, could remove these frequencies
by subtraction and by this method implement a high-pass filter
instead of a pure differentiator.
‘Predictive coding’ is a theory that explains the center–surround

structure of the receptive field by positing that the surround estimates
the most probable signal at the center, which is subtracted from the
actual center signal, effectively reducing spatial redundancy between
ganglion cells (Srinivasan et al., 1982). Our results imply a predictive
coding strategy to deal with spatiotemporal correlations. Thus, the
surround collects over a wider area than the center to make a
prediction of what will happen next at the center; then this prediction
is delayed and subtracted from the center. Such a mechanism would be
useful for removing redundancy from objects that cross over the
surround and into the center, as might occur during saccadic eye
movements.
A spike train’s coding capacity is set by the firing rate (MacKay and

McCulloch 1952; Reinagel et al. 1999; Rieke et al. 1997). Only some
of this capacity is actually used to transmit information; the remainder
is lost to redundancy and noise entropy. Therefore reducing redun-
dancy increases the amount of entropy available for information.
Reducing the amount of entropy wasted on noise would also increase
available entropy, but we found that brisk–transient and sluggish cells
fail to take advantage of this strategy. Indeed the surround, when
confronted with spatiotemporal correlations, increases noise in the
spike train. Our results are consistent with the idea that the noise
increase is due to an interaction between spike rate and the refractory
nature of the spike train: surround antagonism reduces spike rate, so
that the characteristic interval of the spike train exceeds the refractory
period which, in turn, obviates the normal effect of refractory period,
which is to reduce spike train noise (Berry & Meister, 1998).
Visual cells in the lateral geniculate nucleus reduce redundancy

more effectively and code information more efficiency when stimu-
lated with natural scenes than with temporal white noise, suggesting
that if we had used natural images we would have found more
information coded per spike (Dan et al., 1996). However, a
comparison of ganglion cell responses to these two stimuli shows
no difference in coding efficiency (Koch et al., 2004, 2006). Thus we
choose artificial stimuli as a tractable way of controlling the
contribution of the surround. So far, this is not possible for natural
stimuli; pharmacologic means of blocking the surround (e.g., GABA
and glycine antagonists) are nonspecific in their effects (Freed, 1992).
If, however, such a means of modulating the surround could be found,
our results predict that a retinal ganglion cell would remove the
spatiotemporal correlations inherent in natural scenes more effectively
with a functioning surround than without one.

Supplementary material

The following supplementary material may be found on
http://www.blackwell-synergy.com

Fig. S1. Decreasing refractory period increases noise.
Please note: Blackwell Publishing are not responsible for the content
or functionality of any supplementary materials supplied by the
authors. Any queries (other than missing material) should be directed
to the correspondence author for the article.
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