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Synaptic Connectivity series

Structure and function of ribbon
synapses
Peter Sterling1 and Gary Matthews2

1Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
2Department of Neurobiology, State University of New York, Stony Brook, NY 11794, USA
Sensory neurons with short conduction distances can

use nonregenerative, graded potentials to modulate

transmitter release continuously. This mechanism can

transmit information at much higher rates than spiking.

Graded signaling requires a synapse to sustain high

rates of exocytosis for relatively long periods, and this

capacity is the special virtue of ribbon synapses.

Vesicles tethered to the ribbon provide a pool for

sustained release that is typically fivefold greater than

the docked pool available for fast release. The current

article, which is part of the TINS Synaptic Connectivity

series, reviews recent evidence for this fundamental

computational strategy and its underlying cell biology.

The synaptic ‘ribbon’ is an organelle expressed in the
terminals of vertebrate photoreceptors and their second-
order neurons (bipolar cells). Ribbons are also expressed
by auditory and vestibular hair cells (reviewed in Ref. [1])
and in electrosensory receptors [2]. In fact, the ribbon
seems to occur wherever synaptic exocytosis is evoked by
graded depolarization and where signaling requires a high
rate of sustained release (Figure 1). Ribbon synapses
Figure 1. Diversity of ribbon synapses. (a) A hair cell. At the apical pole, cilia express the t

tether numerous vesicles (white and yellow; the yellow vesicles are docked) near the p

typically contains 10–20 ribbons. (b) A cone terminal. Each ribbon (red) is located at the

lateral processes (horizontal cells, H) and one central process (bipolar dendrite, B). Each

bipolar dendrite (Figure 5a). (c) A bipolar terminal. Each ribbon supplies a dyad of postsy

cell dendrite and one amacrine process (A), or two amacrine processes. The amacrine p
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invariably use glutamate as the primary transmitter.
The present article summarizes recent progress in
understanding the role of this peculiar organelle
(see also Refs [3–6]).
Microscopic structure

The photoreceptor ribbon is typically a plate, w30 nm
thick, that extends perpendicular to the plasma mem-
brane (Figures 2 and 3). The ribbon juts w200 nm into the
cytoplasm, and never much more, but can vary in length
from 200–1000 nm. The ribbon anchors along its base to
an electron-dense structure (arciform density) that in turn
anchors to the presynaptic membrane. This allows the
ribbon to float w20 nm above the membrane like a flag or a
balloon on a short leash. One puzzle is that hair cells lack
an arciform density, so the anchor of the ribbon is invisible
by standard electron-microscopic procedures.

The ribbon’s surface is studded with small particles
(w5 nm diameter) to which synaptic vesicles tether via
fine filaments (w5 nm thick and w40 nm long). Usually
there are several filaments per vesicle [7]. Tethered vesicles
cluster densely but do not touch. Vesicles tethered along
Review TRENDS in Neurosciences Vol.28 No.1 January 2005
ransduction channels. At the basal pole, ribbons (red; also known as ‘dense bodies’)

resynaptic membrane. Each ribbon supplies one postsynaptic process. A hair cell

apex of an invagination that accommodates a triad of postsynaptic processes: two

cone typically expresses 20–50 triads. Flat contacts (FC) represent a different type of

naptic processes, which can comprise two ganglion cell dendrites (G), one ganglion

rocesses often return a synapse to the bipolar terminal.

. doi:10.1016/j.tins.2004.11.009
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Figure 2. Generic ribbon synapse. The ribbon (red) anchors near presynaptic

membrane with the assistance of the protein Bassoon (green), which can also

associate with voltage-gated Ca2C channels (blue) that cluster in the underlying

plasma membrane. Vesicles that press against the plasma membrane (yellow) are

considered ‘docked’ and correspond to the ‘ultrafast’ pool; the remaining vesicles

tethered to the ribbon correspond to the ‘readily releasable pool’. Vesicles

unattached to the ribbon diffuse freely in the cytoplasm [19,80].

Figure 3. Structure of the ribbon synapse. (a) Cross-section through a ribbon in a bipol

(arrowheads). (b) En face view of a ribbon in a cone terminal. The even spacing of vesicl

w144 vesicles are tethered and 36 are docked. Postsynaptic processes (asterisked) are n

beneath the dark ridge that anchors the ribbon to the presynaptic membrane (arrow

presynaptic terminal; green represents immunostaining for the anchoring protein Basso

rod terminal often contains a single, large, crescent-shaped ribbon, but commonly it ‘cra

serve a single invagination [102]. The cone terminal contains an array of smaller ribbons

in the fovea to w50 in peripheral retina [39]. All panels are from primate (macaque); (a,

permission, from Ref. [23] q (2003) Springer.
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the base of the ribbon directly contact the presynaptic
membrane and thus are considered ‘docked’. Consequently,
the ribbon’s geometry establishes a fixed ratio between the
numbers of vesicles tethered and docked, roughly 5:1 for
plate-like ribbons and 10:1 for spheroidal ones [8,9]. The
space between spherical ribbons and the membrane is
occupied by docked synaptic vesicles which, in lieu of an
arciform density, might keep the sphere in place.
Molecular structure

Several proteins associated with the ribbon have been
identified. First, there is RIM, which is present at all
synapses and interacts with rab3, a GTPase expressed on
synaptic vesicles [10]. Second, there is RIBEYE, which has
a novel A domain at the N terminus and a B domain,
identified as the transcriptional suppressor, CtBP2
[11,12]. This domain is homologous to a specific dehydro-
genase and might serve enzymatically. CtBP2 has also
been localized to hair cell ribbons [12]. Third, there is
immunostaining for KIF3A, a kinesin motor [13]. Finally,
there are Bassoon and Piccolo, presynaptic ‘cytomatrix’
proteins, which are also associated with conventional
ar terminal. Each vesicle is tethered to the ribbon surface by several fine filaments

es is apparent. Counting vesicles enclosed by the dotted line (including both faces),

umerous and located relatively far from the docking (release) sites, which are just

heads). (c) Tangential view of photoreceptor terminals. Dotted lines outline the

on, and red represents staining for the a 1F subunit of an L-type Ca2C channel. The

cks’ into two separate ribbons (arrowheads) that maintain the overall crescent and

that serve separate invaginations. The number of cone ribbons increases from w20

b) are electron micrographs; (c) merges two confocal images and is reprinted, with
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synapses. Bassoon and Piccolo are both expressed at
photoreceptor ribbons, but only Piccolo is expressed at
bipolar ribbons [14,15].

Bassoon localizes ultrastructurally to the arciform
density, which suggests a role in anchoring the ribbon
(Figure 3c). Indeed, when Bassoon is functionally knocked
out, most ribbons float free in the cytoplasm. Correspond-
ingly, synaptic transmission from photoreceptor to bipolar
cell is severely attenuated [15]. This provides perhaps the
strongest functional evidence that an attached ribbon is
crucial for normal synaptic function. If this functional
knockout in hair cells has a similar effect, it would imply
that even though the hair cell anchor is invisible by heavy
metal staining, this important anchoring protein is pre-
sent and essential.

As important as the ribbon’s composition is that of
the filaments tethering the vesicles to it. The filaments
probably do not contain synapsin I, which clusters vesicles
at conventional synapses, because this protein is absent
from ribbon synapses [16]. Because the ribbon stains for
kinesin, the filaments might contain a tubulin that could
stride along fixed kinesin particles. However, low tem-
perature, which depolymerizes cytoplasmic microtubules,
does not affect ribbon morphology [7]. Thus, it should
be kept in mind that immunostaining of the ribbon for
kinesin might simply represent a fortuitous cross-reaction
with a conserved epitope.

Alternatively, consider that filaments must be shed
during high rates of exocytosis but do not accumulate near
the ribbon. Thus, filaments probably depolymerize rapidly
during exocytosis and repolymerize as vesicles are
retrieved for re-release. If so, they might be actin that
could step down the ribbon on a yet-to-be-discovered
myosin. Against this idea, cytochalasin D reduced the
filaments to some extent but by no means eliminated them
[17]. Furthermore, cytochalasin D dissolved the actin
cytoskeleton of bipolar terminals but did not alter
exocytosis [18]; nor did latrunculin, which blocks actin
polymerization [19]. Finally, Usukura and Yamada [7]
state that filaments borne on the ribbon were never
labeled with anti-actin antibodies.

Dystrophin, an actin-binding protein of the membrane
cytoskeleton, is present in rod and cone terminals [20].
And mutations that disturb binding of dystrophin to a
transmembrane protein, dystroglycan, reduce photo-
receptor synaptic transmission (reduced b-wave of the
electroretinogram [21]). However, these proteins do not
localize to the ribbon, but rather to the lateral regions
of the presynaptic membrane [22], which are sites of
endocytosis (Figure 4).

Voltage-gated Ca2C channels

If exocytosis is truly associated with the ribbon complex,
voltage-gated Ca2C channels should be expressed along
the docking sites. This has now been demonstrated in
several ways: (i) immunostaining for the a 1D and 1F
subunits of the L-type Ca2C channel precisely follows the
distribution of Bassoon along the base of the ribbon [23]
(Figure 3c); (ii) immunostaining for a 1D colocalizes with
fluorescent dihydropropidine, an L-type channel antagon-
ist [24]; (iii) ‘hot spots’ of Ca2C entry in bipolar and hair
www.sciencedirect.com
cells match in number and location the ribbons identified
by immunostaining for RIBEYE [25]; and (iv) Ca2C hot
spots colocalize with ribbons identified in the living
terminal using a small peptide that binds CtBP2 [26].
The hair cell channels are also L-type [1,27], which are
specialized to be fast [28]. Thus, vesicles docked along the
base of the ribbon resemble the lizard neuromuscular
junction, where vesicles also dock in parallel rows flanking
rows of Ca2C channels [29]. In both cases, the extended
numbers of docking sites near Ca2C channels probably
serve the same function: to enlarge the releasable pool and
hence the quantal content per unit time.
Quantitative aspects of presynaptic architecture

For a cell type of defined function the dimensions and
shape of the ribbon are invariant. For example, the
mammalian rod typically expresses a single ribbon that
is always crescent-shaped and constant in size from mouse
to man (Figure 3c). This ribbon provides docking sites for
w130 vesicles plus a reserve depot of w640 vesicles. Such
constancy makes sense for the rod synapse because its
task is always the same: to transfer a binary signal, 0 or 1
photon event [30–33]. Similarly, cone terminals in a given
species and retinal locus (e.g. cat central area) express a
nearly constant number of ribbons (11.6G0.9) and,
although these differ in length from 0.2–3.5 mm, the total
length per terminal is remarkably constant (9.9G0.9 mm).
This provides a fixed number of docking sites (w600) and
depot sites (w3000) [34]. Similar numbers for the total
releasable pool (3550 vesicles) based on ultrastructure are
found in salamander rod [35].

That the cone docks and tethers about fivefold more
vesicles than the mammalian rod suggests that ribbon size
and number correlate with information rate [36]. This
follows because in daylight a cone transduces 103–107

photons per integration time to produce a finely graded
signal, whereas at night a rod transduces 0 or 1 photon per
integration time to produce an irreducibly simple binary
signal. Additional examples include the salamander rod
which, being much larger than a mammalian rod, collects
more information per unit time (a multi-photon, graded
signal). Correspondingly, its synaptic terminal expresses
about eight fairly large ribbons with releasable pools
resembling those of mammalian cones [37]. Similarly,
a primate foveal cone, with a narrow inner segment
expresses w20 ribbons, each with w36 docking sites and
144 reserve sites (Figure 3b,c). But as the cone inner
segment expands toward peripheral retina and probably
captures still more information, the number of ribbons
increases to O50 [38,39].

Hair cells also follow these general rules. Thus, the
spheroidal ribbon in a frog saccular hair cell docks many
vesicles (w40) and tethers nearly tenfold more (w350) [8].
Regarding total docking and tethered sites per cell, the tall
hair cells of the chick cochlea (homologs of the mammalian
inner hair cells) express the same average number of
ribbons (w15) across the tonotopic axis. However, cells
serving the high-frequency region contain much larger
ribbons with more total docking and reserve sites.
Furthermore, numbers of voltage-gated Ca2C channels

http://www.sciencedirect.com
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also correlate with release area over 2–3 orders of
magnitude and across species [40].

Similarly, a cat inner hair cell in the 0.25 kHz region of
the cochlea innervates ten afferent fibers (typically one
ribbon per fiber), but one in the 10 kHz region innervates
30 afferent fibers [41,42]. Mouse apparently resembles cat,
with w25 ribbons per inner hair cell [43]. These trends –
more release and more reserve sites for higher frequencies
– seem consistent with the general law that a channel’s
information rate (bits sK1) increases with temporal
bandwidth (for a given signal-to-noise ratio) [36,44].

Compared with photoreceptors and hair cells, retinal
bipolar cell ribbons tend to be smaller and more numerous.
For example, a goldfish bipolar cell ribbon docks w10
vesicles and tethers w70 vesicles (D. Zenisek,
G. Matthews and P. Sterling, unpublished). This terminal,
a popular model for electrophysiology, expresses 40–60
ribbons [4,45]. In mammals, bipolar cells have 30–40
ribbons for slower, tonic types. For example, the rod
bipolar cell expresses 30–40 ribbons (in cat, rat and
mouse) [46–48]; in primates, the midget bipolar cell
expresses 30–50 ribbons [49] and the S-cone ON bipolar
cell expresses w40 ribbons [50]. Transient bipolar cells
express considerably more ribbons; thus the cat b1 bipolar
cell expresses 105 ribbons [51], and the apparently
corresponding bipolar type in mouse expresses 120
ribbons [48]. Transient bipolar cells should transmit
information at higher rates than sustained bipolar cells
because they have higher temporal bandwidth and
comparable signal-to-noise ratio.

Postsynaptic structure

Hair cell: one vesicle / one postsynaptic process /
one spike

Ribbon synapses display diverse postsynaptic configur-
ations. Simplest are the hair cells, where each ribbon
usually supplies a single, postsynaptic bouton across a
20 nm cleft (Figure 1a). One vesicle released onto this
high-resistance structure can depolarize it sufficiently to
evoke an action potential [52,53], but there is clear
evidence for multivesicular release from a single ribbon
onto one bouton, perhaps to enhance reliability and allow
an auditory afferent to follow very high temporal fre-
quencies [53]. An auditory hair cell (in cat) can connect
to 10–30 afferent boutons [41], mostly via single ribbon
synapses, showing remarkable divergence. Reptilian hair
cells show somewhat different patterns [54]. Thus, hair
cell economics – one ribbon / one vesicle (or a few
vesicles) / one afferent fiber / one action potential – are
vastly simpler than for retinal neurons where divergence
is always accompanied by substantial convergence [55].
For example, whereas a cone diverges to 10–20 bipolar
cells, each bipolar cell receives convergent input from w10
cones; whereas a bipolar cell diverges to several ganglion
cells, each ganglion cell receives convergent input from
10–100 bipolar cells.

Photoreceptor: one vesicle / many postsynaptic

processes with diverse receptors

A photoreceptor ribbon-type active zone supplies gluta-
mate to multiple postsynaptic processes. Originating from
www.sciencedirect.com
different cell types, each expresses a characteristic type
of glutamate receptor that is located at a different, but
characteristic distance from the release sites. For
example, the rod terminal is invaginated by a pair of
horizontal cell spines that express an AMPA receptor just
across the synaptic cleft, w20 nm from release sites
(Figures 1b, 2 and 5). The rod terminal is also invaginated
by two or more bipolar dendrites that express a metabo-
tropic receptor (mGluR6). The dendritic tips end several
hundred nanometers away from the release sites [31,56];
however, the receptor is not expressed at the tips but
slightly down the shaft near the mouth of the invagination
[57]. Consequently, the diffusion distance from vesicle
release sites to these receptors is several hundreds of
nanometers. Furthermore, the release sites are aligned
along the concave edge of the rod ribbon’s stereotypical
crescent [31]; thus the release sites in effect arch above the
receptor sites. This tends to equalize the distance from
all release sites to these glutamate receptors and thus
minimize differences in spatiotemporal glutamate concen-
tration between vesicles released from different sites
along the ribbon [32].

The cone ribbon synapse exhibits an even richer variety
of postsynaptic structures [38,39,58,59]. First, resembling
the rod terminal, there is a ‘triad’, comprising two
horizontal cell spines near the release sites, plus one or
several invaginating bipolar dendrites with tips far from
the release sites. The horizontal cell spines express AMPA
receptors [38], and the bipolar dendrites express mGluR6,
also not at the tip but several hundred nanometers down
the shaft [57]. Second, the cone terminal’s basal surface,
except for the invaginations, is densely studded with the
dendritic tips of various types of bipolar cell, each located
at a characteristic distance from the triad [60,61]. These
express a panoply of ionotropic glutamate receptors whose
properties can be matched to the different distances. Thus,
immunostaining shows puncta for the GluR1 subunit
(AMPA type) nearest to the triad, and puncta for GluR5
and GluR6/7 subunits (kainate types) further from
the triad [38,58].

These arrangements might explain how bipolar types
come to express different kinetics and pharmacology.
Thus, one type shows large, fast currents with AMPA
pharmacology, and rapid recovery from desensitization,
whereas two other types show smaller, slower currents
with kainate pharmacology and slower recovery [62,63]. It
is anticipated that cells with the fast receptor kinetics will
correspond to those with AMPA immunostaining whose
dendrites end nearest the triads, and that cells with
slower kinetics will correspond to the kainate staining and
be farther away. Even so, all bipolar dendrites, including
those expressing mGluR6 and subunits of AMPA and
kainate receptors, are 10–50 fold further from release sites
than is typical for a conventional synapse (Figures 4,5).

Finally, w1000–2000 nm beneath the basal surface of
the cone terminal, pairs of horizontal cell processes exhibit
small electron-dense patches. These prove to be ionotropic
glutamate receptors, containing both AMPA and kainate
subunits [38,58]. Glutamate released from the ribbon might
reach these receptors, despite the immense distance,
because glial processes, whose glutamate transporters

http://www.sciencedirect.com
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would rapidly remove glutamate from the cleft, separate
neighboring cone terminals but are excluded from the
region beneath the terminal [64] (Figure 5a). Of course,
individual glutamate quanta diffusing over this great
distance will merge in the extracellular cleft and could
cause slow modulations in extracellular glutamate to
transmit low temporal frequencies to the horizontal
cell dendrites.

In summary, each vesicle released from a cone synaptic
ribbon contributes glutamate to postsynaptic processes at
five, progressively more distant locations. The spatiotem-
poral profile of the glutamate quantum will be progress-
ively smeared [32] (Figure 3b), but specific combinations
of glutamate receptors at each location could optimize
their binding kinetics to the characteristic spatiotemporal
concentration. The nearer, faster receptors would detect
individual quanta, but the farther, slower receptors would
allow spatiotemporal integration of multiple quanta and
thus cooperation between adjacent ribbons. This arrange-
ment would allow each vesicle to contribute information at
different temporal bandwidths to different postsynaptic
cell types and thus extract the most information from
each vesicle.
www.sciencedirect.com
Bipolar cell: one vesicle / two processes with different

receptors

The bipolar ribbon is usually presynaptic to a pair of
processes (dyad). The glutamate receptors are always
fairly near the release site and symmetrically placed, so
each postsynaptic process sees the identical spatiotem-
poral profile of glutamate. However, the two processes
commonly express different receptors: ganglion cell den-
drites preferentially express AMPA and NMDA receptors,
whereas amacrine processes express kainate receptors
and the orphan receptor subunits d1/d2 [65]. It is
interesting that geometry of the bipolar synapse is far
simpler than that of the photoreceptor. Perhaps this occurs
because filtering at the first synapse gives each bipolar type
a narrower range of frequencies to transfer at its output.
However, it is far from clear why the design calls for two
postsynaptic processes rather than three or more.
Exocytosis at ribbon synapses

Exocytosis at the bipolar ribbon synapse has been observed
directly. Using total internal reflection microscopy, vesicles
labeled by the dye FM1-43 are seen to pause at the
membrane and then, upon opening of Ca2C channels, to

http://www.sciencedirect.com
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release all the dye promptly [66]. Destaining occurs within
milliseconds, consistent with full fusion [67]. This rules
out release by a kiss-and-run process, which would require
the dye to dissociate from the lipid phase and exit via
an aqueous pore, requiring seconds. Full collapse of the
vesicle into the plasma membrane is further supported by
interference reflection microscopy [68].

The bipolar cell active zone can release neurotrans-
mitter continuously for hundreds of milliseconds during
strong stimulation. This release exhibits two kinetically
distinct components: a small fast pool (w20% of the total)
is released in w1 ms, and a large sustained pool (w80%) is
released over several hundred milliseconds [69–71]. The
fast pool matches the number of vesicles docked at the
base of the ribbon, and the sustained pool matches the
number of vesicles tethered to the ribbon in higher rows,
more distant from the plasma membrane [45]. Similarly,
release at the salamander rod synapse also exhibits tran-
sient and sustained components, on timescales of milli-
seconds and hundreds of milliseconds, and the size of the
releasable pool matches the number of vesicles tethered to
the ribbon [35]. So, the large size of the sustained com-
ponent is what functionally distinguishes ribbon-type
active zones from conventional active zones, where
sustained release is typically minor.

The neat correspondence between the pool of tethered
vesicles and the pool for sustained release in both rods and
bipolar cells suggests that the ribbon might serve as a
platform where vesicles can be primed to allow sustained
release. However, if vesicles can fuse at sites other than
ribbons during sustained release [66], the match between
the structurally tethered pool and the functional pool
could be spurious. Because Ca2C channels concentrate at
ribbons [23,25–27,72,73], Ca2C-triggered exocytosis is
expected to occur preferentially at ribbons, where post-
synaptic receptors are also concentrated (Figure 1c).
Matching this expectation, release at the rod synapse is
quantitatively similar whether measured with postsyn-
aptic currents (reflecting focal release at the ribbon) or
with presynaptic capacitance changes (potentially reflect-
ing both focal and ectopic release) [35]. Yet the equivalence
of tethered and releasable vesicles does not extend to
the hair cell ribbon, where the sustained pool proves to be
w6–8 times larger than the number of vesicles tethered to
the spheroidal ribbons [74]. This might suggest that the
match in photoreceptor and bipolar cells is pure coinci-
dence – or that hair cell vesicles can be primed before
attaching to the ribbon – or that priming reactions are
faster in hair cells, allowing vesicles to cycle more rapidly
across the ribbon [75].

How might the primed vesicles in higher rows on the
ribbon release their neurotransmitter during sustained
stimulation? One possibility is that the filaments connect-
ing vesicles to the ribbon constitute a molecular motor
that transports vesicles in successive waves to the base,
where they then fuse with the plasma membrane. How-
ever, any such motor must not require ATP hydrolysis,
because the full complement of vesicles can be released
with normal kinetics in the presence of ATPgS, which does
not support ATP-dependent motors such as kinesin or
myosin [76]. If the functional pool does correspond to the
www.sciencedirect.com
tethered pool (despite the preceding caveats), it follows that
all the vesicles on the ribbon have undergone the essential
priming reactions that require ATP hydrolysis. Conceivably,
vesicles on the face of the ribbon might dock with each other,
allowing a wave of compound fusion to sweep up the ribbon
during sustained transmitter release [5,8,77].

Once depleted, the bipolar cell’s releasable pool requires
several seconds to refill [78]. Refilling is severely retarded
when ATP hydrolysis is inhibited [77,79], which suggests a
central role for ATP-dependent priming in functional
recovery of this releasable pool. Thus the bipolar ribbon
might provide a platform to prime vesicles and then hold
the newly fusion-competent vesicles near to release sites.
By contrast, the hair cell’s releasable pool refills much
faster (!200 ms) [75], suggesting that vesicles in the
hair cell can be primed in the cytoplasm, before tethering
to the ribbon.

Endocytosis

The large amount of exocytosis during sustained trans-
mitter release requires equally high-capacity endocytosis
to retrieve the added membrane. In cone photoreceptors,
fused membrane is directly recycled into small synaptic
vesicles, without intermediate pooling into endosomes [80]
(Figure 4a,b). The recycled vesicles are mobile and, dif-
fusing as fast as similarly sized microspheres, rapidly
replenish the releasable pool [80]. Surprisingly, bipolar
cells rely on a different mechanism for rapid retrieval,
in which membrane is endocytosed in large bites that
only later give rise to recycled synaptic vesicles [19,81]
(Figure 4c). Unlike cones, where newly recycled vesicles
rapidly appear in the pool tethered to ribbons, recycled
vesicles make up only w10% of the vesicles on bipolar
cell ribbons, even after O10 min of activity [80]. Thus, the
bipolar cell relies on its large reserve of synaptic vesicles
to replenish the releasable pool, whereas cone photo-
receptors evidently have no reserve pool and rely instead
on rapid recycling. In this regard, the cone ribbon synapse
resembles the conventional amacrine cell synapse, where
extensive labeling of recycled synaptic vesicles was
observed, without significant labeling in larger endosomes
[81] (Figure 1d). Like bipolar cells, hair cells exhibit
large numbers of endosomes and membrane invaginations
after stimulation [8], which suggests that hair cells
and bipolar cells might share a common mechanism of
membrane retrieval.

Ca2C sensitivity

Exocytosis at ribbon synapses, as for all chemical synapses,
is regulated by Ca2C. But the Ca2C-dependence of release
varies. Hair cell ribbon synapses exhibit a steep dependence
on Ca2C concentration ([Ca2C]), with a Hill coefficient of 5
[82]. Bipolar cells also exhibit a steep dependence on [Ca2C]
[83]. The physiological rate of vesicle release at bipolar
terminals is likely to require 20–50 mM free Ca2C [84],
whereas a slower form of membrane turnover is stimulated
by lower Ca2C levels [85,86]. By contrast, exocytosis at the
photoreceptor synapse is less steeply dependent on [Ca2C]
and is stimulated by much lower levels of free Ca2C (w1 mM)
[35]. The upshot is that transmitter release at the
photoreceptor synapse is approximately linearly related
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to Ca2C current, a feature that might help expand the
dynamic range of a cell whose physiological range of
membrane potential (K40 to K60 mV) spans the negative
tail of the activation range for Ca2C channels.

Presynaptic regulation

Exocytosis at ribbon synapses is regulated by diverse
feedback mechanisms. (i) Horizontal cell spines that invagi-
nate cone terminals might exert their negative effect by
injecting an ephaptic current through a hemi-junction [87].
(ii) Horizontal cells release GABA, which might feedback
to GABAA receptors [88]. (iii) Glutamate released at the
photoreceptor activates a voltage-dependent glutamate
transporter that drives a concentration-dependent ClK

current [89,90]. (iv) Photoreceptor and bipolar terminals
express metabotropic glutamate receptors that regulate
voltage-gated Ca2C channels [91,92]. (v) synaptic vesicles
release protons that inhibit Ca2C channels and thus tend
to locally inhibit further release. This occurs both at the
cone [93] and the bipolar [94] terminals. Such proton-
mediated inhibition, by creating a local refractory period
for release, might help ensure that all regions of the
extended active zone are used equally. (vi) GABA from
amacrine processes can feedback onto the bipolar terminal
to limit and synchronize release [92,95,96]. (vii) Photo-
receptor ribbons can change shape and size, apparently
in response to changes in illumination and with time of
day [97]. How these shifts affect the rates of exocytosis
remains to be investigated.

Release rates during natural stimulation

Measurements of release kinetics and pool size generally
use a cell voltage-clamped in isolation or in a tissue slice.
But a few studies have measured rates during natural
stimulation of an intact circuit. Analyzing synaptic noise
in a turtle OFF bipolar cell suggested w9200 transmitter-
related events per second [98]. Assuming that each
represents one vesicle, and estimating the number of
contributing active zones, one active zone can apparently
sustain release at w20 vesicles sK1. Noise analysis of
mouse cone bipolar cells gave a similar result [99].

Both studies found that bright light completely sup-
presses noise in the bipolar cell, suggesting that light can
strongly suppress release. This is confirmed by experi-
ments with the dye FM1-43, which once loaded into
vesicles by endocytosis [80] can be retained completely by
steady illumination, and then discharged nearly com-
pletely upon return to darkness. The maximum release
rate calculated from this study is w300 vesicles sK1 per
cone (Kramer et al., unpublished). At the mammalian rod
synapse the sustained rate has not been measured, but
calculations suggest that to transfer a single photon event
reliably, it should release w100 vesicles sK1 [32,33].

Noise analyses of ganglion cells in the intact retina
support the idea that different bipolar types release
quanta at different rates. Thus, the rate needed to evoke
a just-maximal sustained response in a brisk-transient
ganglion cell is w3700 quanta sK1, corresponding per
ribbon synapse to w1.7 quanta sK1. Transient release at
this ribbon synapse could rise as high as 17 quanta sK1

[100]. The maximal sustained response of a brisk-sustained
www.sciencedirect.com
ganglion cell can reach 45 000 quanta sK1 and depends on
two different types of bipolar cell, whose synapses appear
to release at high sustained rates, at O20 quanta sK1

[101]. However, for stimuli in a more natural range of
contrasts and frequencies, the rates are far lower, at w120
quanta sK1 for the ganglion cell (M. Freed, pers. commun.).
Concluding remarks

The idea that the ribbon assists high rates of sustained
exocytosis now seems well supported by combined ana-
lyses of structure and function. The variations in ribbon
morphology and ribbon number across cell types suggest
that this organelle is further tailored very specifically to
deliver particular rates under particular conditions. To
test this will require comparing morphology with careful
measurements of release under natural conditions. At
least as interesting, and possibly more challenging, will be
to discover whether vesicles actually move on the ribbon,
and how retrieved vesicles return to the release sites. The
answers might require stopping the action, perhaps by
rapid freeze followed by electron microscopy, or by further
studies with total internal reflection fluorescence (TIRF)
microscopy to follow vesicles in real time.
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