
Neuron, Vol. 37, 379–382, February 6, 2003, Copyright 2003 by Cell Press

ReviewSynaptic Ribbon:
Conveyor Belt or Safety Belt?

current hypothesis is that the vesicles tethered to all of
the ribbons comprise the readily releasable pool.
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3 Department of Neuroscience “conveyor belt,” to shuttle vesicles downward toward
School of Medicine docking/release sites. This idea appeared to provide a
University of Pennsylvania mechanism for sustaining high release rates (Parsons
Philadelphia, Pennsylvania 19104 et al., 1994). Indeed, the multiple kinetic components of

exocytosis could be interpreted as set by the transit
time for vesicles from different locations on the ribbon
to reach the release sites. Specifically, a small, rapidThe synaptic ribbon in neurons that release transmitter
pool (“ultrafast”) matches the number of vesiclesvia graded potentials has been considered as a con-
pressed up against the presynaptic membrane (Men-veyor belt that actively moves vesicles toward their
nerick and Matthews, 1996), and a larger, slower poolrelease sites. But evidence has accumulated to the
(“readily releasable”) corresponds to the remaining vesi-contrary, and it now seems plausible that the ribbon
cles tethered to the ribbon (von Gersdorff and Matthews,serves instead as a safety belt to tether vesicles stably
1994; von Gersdorff et al., 1996). Similar kinetic compo-in mutual contact and thus facilitate multivesicular re-
nents have been reported for auditory hair cells (Moserlease by compound exocytosis.
and Beutner, 2000).

How would the vesicles move along the ribbon? ASensory receptors and second-order neurons com-
kinesin polypeptide, Kif3a, was identified on the ribbonmonly encode graded input with a graded, nonregenera-
by immunostaining (Muresan et al., 1999), suggestingtive membrane potential. By avoiding spikes, the recep-
that a motor might transport vesicles along the ribbon.tor cell can vary synaptic output continuously and thus
However, microtubules, considered to be the obligatorytransfer more information (van Hateren, 1992; de Ruyter
rails for a kinesin motor, are missing. On the other hand,van Steveninck and Laughlin, 1996). To finely grade the
the ribbon’s surface is studded with proteinaceousquantized synaptic output requires that many synaptic
knobs (Usukura and Yamada, 1987)—which suggestvesicles be released at high rates (Laughlin et al., 1987).
macromolecular “stepping stones” across which theAccordingly, the photoreceptor, hair cell, and retinal bi-
end-feet of motorized filaments might stride in stilt-likepolar cell all exocytose several thousand vesicles s�1

fashion (Rao-Mirotznik et al., 1995).(Rieke and Schwartz, 1996; Parsons et al., 1994; von
But evidence accumulates against an active conveyorGersdorff and Matthews, 1994). Such performance im-

belt. When ATP-�S is substituted for ATP in a patchplies both a large pool of “readily releasable” vesicles
pipette and dialyzed into an isolated retinal bipolar ter-and a mechanism for their rapid release.
minal, there is no effect on the extent or timing of release:The active zones at these synapses employ a special-
stepping the cell to 0mV still releases the whole readyized structure, the “ribbon” or “dense body,” which an-
pool of 5000 vesicles within 200 ms (Heidelberger et al.,chors to the presynaptic membrane only nanometers
2002). Since ATP-�S does not support kinesin or otherfrom the clustered, voltage-gated calcium channels. The
cytoplasmic motors, this result seems to exclude themribbon tethers 100 or more synaptic vesicles, each by
from a role in discharging either the fast or slow compo-several short filaments, to form an apparently stable
nents of vesicles tethered to the ribbon. Furthermore,depot. This static impression of a depot, based on elec-
the readily releasable pool can fuse at 100-fold fastertron microscopy, seems to be supported by the dynamic
rates: when [Ca2�] is raised instantaneously by flashobservation from total internal reflectance microscopy
photolysis in a bipolar terminal, all vesicles exocytosethat vesicles diffuse to “hot spots” on the plasma mem-
in 1–2 ms (Heidelberger et al., 1994). If vesicles movebrane where they are released preferentially (Zenisek et
along the ribbon, the rate would be �100 �m s�1, muchal., 2000). Each cell employs multiple ribbons, ranging
faster than the fastest molecular motor associated withfrom 10 to 100, and consequently, the number of vesi-
intracellular transport (Gilbert, 2001).cles tethered to all of the ribbons is on the order of 1000

Vesicles might diffuse along the ribbon. To match theto 10,000 (von Gersdorff et al., 1996; Lenzi et al., 1999).
rate triggered by flash photolysis, a diffusion constantThese tethered vesicles correspond numerically to the
would need to be at least 0.1 � 10�6 cm2 s�1 (Hille, 1992).size of the readily releasable pool (von Gersdorff et al.,
However, measurements of the actual movement of syn-1996). Vesicles in this pool appear to have undergone all
aptic vesicles in approaching putative release sites inof the priming reactions that are essential for exocytosis,
retinal bipolar cells are consistent with a diffusion con-because the whole pool can be released in the absence
stant three orders of magnitude slower (Zenisek et al.,of ATP hydrolysis (Heidelberger et al., 2002). Thus, the
2000). Such slow diffusion cannot account for the maxi-
mal measured rates of exocytosis (Heidelberger et al.,
1994; Heidelberger, 1998). The situation in a cochlear*Correspondence: thd@vet.upenn.edu
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2002). These structures were interpreted as endosomes
and were assumed to represent postrelease coales-
cence of vesicles that had been released individually.
Yet conceivably, these structures represent endocytic
recovery of membrane from vesicles released by com-
pound fusion; i.e., the coalescence might represent exo-
cytosis rather than endocytosis.

The hypothesis of compound fusion is also consistent
with recent recordings postsynaptic to the cochlear in-
ner hair cell. A tiny afferent terminal contacts the base
of this cell and receives transmitter from one to two
ribbon synapses. Patching this terminal, Glowatzki and
Fuchs (2002) observed that the EPSCs were temporally
clustered, suggesting that individual quanta tend to be
released together. Furthermore, these events varied in
amplitude from 40 pA (expected for a single vesicle) to
20-fold larger. The distributions of EPSC intervals and
amplitudes are consistent with the coordinated release
of multiple quanta. While this does not prove compound
fusion, such a mechanism could certainly explain the
observation.

Figure 1. Schematic of Compound Exocytosis at a Ribbon Synapse
Molecular Mechanisms of Compound Exocytosis(Upper panel) Ribbon holds synaptic vesicles in close proximity to
Widely accepted models of the events that mediate fasteach other near the active zone. Traditional docked vesicles are

shown in blue, vesicles tethered to ribbon in red, and cytoplasmic exocytosis involve “heterotypic” fusion between vesi-
vesicles in yellow. (Lower panel) Compound exocytosis results from cles and plasma membrane. These models require mo-
the fusion of vesicles tethered to the ribbon with docked vesicles lecular interaction between vesicle v/Q SNAREs and
either preceding or following their fusion with the plasmalemma. target membrane t/R SNAREs (Sollner and Rothman,

1994; Pevsner et al., 1994). Such simple SNARE models
cannot explain compound exocytosis in nonneuronal

inner hair cell is even more challenging, as 27,000 vesi- cell types that use “homotypic” fusion between contigu-
cles can fuse in �1 ms (Beutner et al., 2001). This implies ous vesicles. Homotypic fusion employs interaction be-
that the fusion-competent pool in the hair cell far ex- tween v/Q SNAREs and t/Q SNAREs, both on the vesi-
ceeds the pool of vesicles tethered to the ribbons, so the cles (Hansen et al., 1999; Niemeyer and Schwarz, 2000;
vesicles would need to move even farther—and faster. Boeddinghaus et al., 2002; Castle et al., 2002). Vesicular
Thus, the fast exocytosis of large numbers of vesicles t/Q SNAREs have not yet been identified at ribbon syn-
by ribbon synapses cannot be explained by known apses (Lenzi and von Gersdorff, 2001), but they are
mechanisms of vesicle movement. found in significant amounts on vesicles isolated from

conventional synapses (Walch-Solimena et al., 1995).
Furthermore, vesicular t/Q- and v/R-SNARES interact inCompound Fusion?

Perhaps vesicles do not move on the ribbon at all. In- the absence of plasmalemma (Otto et al., 1997). Thus,
assuming appropriate regulation, known synaptic ma-stead, they might be tethered stably in mutual contact,

positioned to fuse serially with each other in a cascading chinery may be sufficient to mediate compound exo-
cytosis at the ribbon synapse.process termed “compound fusion” (Figure 1). Although

compound fusion has not been described at synapses, Some studies of fast exocytosis suggest that the pre-
synaptic fusion machinery must lie within nanometersit is a well-established mechanism for focal vesicular

release by nonneural secretory cells. For example, blood of the calcium channels to permit their interaction
(Sheng et al., 1994; Rettig et al., 1996). Yet, at ribbongranulocytes can target and secrete large quantities of

degradative enzymes and vasoactive amines via com- synapses, fast exocytosis certainly occurs for vesicles
initially tethered 30–100 nm away from the calcium chan-pound exocytosis (Scepek and Lindau, 1993; Lollike et

al., 2002). This mechanism has been suggested for rib- nels. Furthermore, fusion machinery need not always
interact directly with calcium channels, since disruptionbon synapses to explain how raising intracellular cal-

cium rapidly by photolytic uncaging can evoke nearly of their interaction site on the channel (the “synprint”
site) reduces neurotransmitter release only �25%instantaneous exocytosis of the whole releasable pool

(Heidelberger et al., 1994; Heidelberger, 1998) and how (Mochida et al., 1996; Rettig et al., 1997). At the calyx
of Held, an auditory synapse specialized for speed anddepolarization can also trigger rapid release of this pool

(B.W. Edmonds, F.D. Gregory, and F.E. Schweizer, per- fidelity, studies with calcium buffers suggest that about
half of the vesicles released by fast exocytosis lie 30–300sonal communication).

Some anatomical observations are consistent with nm away from any calcium channel cluster (Borst and
Sakmann, 1996). Thus, calcium diffusing over hundredscompound fusion. Tubular structures near synaptic rib-

bons are observed in freeze fracture (Hama and Saito, of nanometers apparently does trigger fast exocytosis
and could support homotypic fusion and compound ex-1977; Hama, 1980) and in reconstructions from ultrathin

sections (Rao-Mirotznik et al., 1995; Lenzi et al., 1999, ocytosis.
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Utility of the Synaptic Ribbon ture experiments to test this hypothesis might include
release triggered by flash photolyis—visualized ultra-and Compound Fusion

Many junctions in the nervous sytem require synchro- structurally after rapid freezing or imaged in real time
by total internal reflectance microscopy.nized release of numerous synaptic vesicles. Spiking

neurons achieve this via a propagated action potential
Acknowledgmentsthat releases one vesicle at each of many active zones
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